Received: Agustus 2022 Accepted: November 2022 Published: November 2022

MODEL REGRESI DATA PANEL PADA FAKTOR-FAKTOR YANG MENENTUKAN PRODUKSI KOPI DI PROVINSI SUMATERA SELATAN TAHUN 2015-2021

Irmeilyana*1, Indah Amalia2, Sri Indra Maiyanti3, Ngudiantoro4

^{1, 2, 3, 4}Universitas Sriwijaya, Fakultas MIPA, Jurusan Matematika

*irmeilyana@unsri.ac.id

Abstract

Cofffee is one of the leading commodities of plantation in Indonesia. South Sumatra is a province with the largest area and coffee production in Indonesia. The purpose of this research was to obtain a panel data regression model on the factors that determine coffee production in 12 districts/municipalities in South Sumatra on 2015-2021. This research used data from the Directorate General of Plantations, Ministry of Agriculture of Indonesia. The estimation of the panel data regression model is carried out using three models, namely the Common Effect Model (CEM), Fixed Effect Model (FEM), and Random Effect Model (REM). Selection of the best model have done by three tests, namely the Chow, Hausman and Lagrange Multiplier tests. The best model chosen is FEM with individual effects. FEM estimation results show that the variable of area of planted land (X_2) has a positive effect and is able to explain the total coffee production in South Sumatra Province by 85.91%. The panel data regression model from FEM is $\hat{Y}_{it} = -52517.81 + \hat{\gamma}_i + 3.812X_{2it}$, where $\hat{\gamma}_i$ is an individual or regional effect that differentiates districts/municipalities in South Sumatra Province.

Keywords: individual effects, Fixed Effect Model, coffee production, panel data regression

Abstrak

Kopi merupakan salah satu komoditas perkebunan unggulan yang ada di Indonesia. Sumatera Selatan merupakan provinsi dengan luas areal dan hasil produksi kopi terbesar di Indonesia. Tujuan penelitian ini yaitu untuk memperoleh model regresi data panel pada faktor-faktor yang menentukan produksi kopi pada 12 kabupaten/kota di Sumatera Selatan tahun 2015-2021. Penelitian ini menggunakan data dari Direktorat Jenderal Perkebunan Kementerian Pertanian Indonesia. Estimasi model regresi data panel dilakukan dengan menggunakan tiga model yaitu *Common Effect Model* (CEM), *Fixed Effect Model* (FEM), dan *Random Effect Model* (REM). Pemilihan model terbaik dilakukan dengan tiga pengujian yaitu uji *Chow*, uji *Hausman* dan uji *Lagrange Multiplier*. Model terbaik yang terpilih yaitu FEM dengan efek individu. Hasil estimasi FEM menunjukkan variabel luas lahan Tanaman Menghasilkan (X_2) berpengaruh positif dan mampu menjelaskan total produksi kopi di Provinsi Sumatera Selatan sebesar 85,91%. Model regresi data panel dari FEM adalah $\hat{Y}_{it} = -52517,81 + \hat{\gamma}_i + 3,812X_{2it}$, dengan $\hat{\gamma}_i$ merupakan efek individu/wilayah yang menjadi pembeda kabupaten/kota di Provinsi Sumatera Selatan.

Kata kunci: efek individu, Fixed Effect Model, produksi kopi, regresi data panel

1. Pendahuluan

1.1. Latar Belakang

Indonesia merupakan negara produsen biji kopi peringkat empat di dunia setelah Brazil, Vietnam dan Kolombia [1]. merupakan salah satu komoditas perkebunan yang berperan penting dalam kegiatan perekonomian dan menjadi salah komoditas ekspor unggulan [2]. Berdasarkan keadaan tanaman, luas areal terbagi menjadi 3 bagian yaitu Tanaman Menghasilkan (TM), Tanaman Belum Menghasilkan (TBM) dan Tanaman Tidak Menghasilkan/Rusak (TTM). Pada [3], produksi kopi yang tinggi di Provinsi Sumatera Selatan ditandai dengan luas TBM dan TM yang tinggi juga.

Produksi kopi dapat dipengaruhi oleh Faktor-faktor produksi beberapa faktor. perkebunan kopi yang digunakan pada [4] antara lain luas areal, luas areal TBM, luas areal TM, luas areal TTM, rata-rata produksi, dan jumlah petani. Faktor-faktor lain vang mempengaruhi produksi kopi juga terdapat pada penelitian [5] antara lain umur produksi, jumlah pohon yang sudah berproduksi, luas lahan, tenaga kerja, tingkat pendidikan petani dan umur petani. Produksi hasil panen faktor merupakan salah satu yang mempengaruhi produktivitas lahan [6]–[8]. Produksi rata-rata 1 pohon berkolerasi tinggi dengan produktivitas lahan [9].

Data panel merupakan gabungan data cross section dengan data time series, dimana unit cross section yang sama diukur pada waktu yang berbeda. Salah satu keuntungan penggunaan data panel yaitu dapat mengatasi masalah penghilangan variabel, memberi lebih banyak informasi, lebih banyak variasi dan lebih efisien [10].

Beberapa penelitian yang telah dilakukan menggunakan data panel antara lain penelitian yang dilakukan oleh [11] mengenai faktorfaktor yang mempengaruhi produksi tebu pada sub sektor perkebunan di Provinsi Jawa Timur yaitu 31 kabupaten/kota penghasil tebu di perkebunan rakyat pada sub sektor perkebunan di Provinsi Jawa Timur tahun 2011-2015. Penelitian yang dilakukan oleh [12]

menganalisis faktor-faktor yang mempengaruhi produksi komoditi olahan untuk ekspor yaitu di Kabupaten Cilacap tahun 2007-2017. Analisis data yang digunakan yaitu *Common Effect Model* (CEM), *Fixed Effect Model* (FEM) dan *Random Effect Model* (REM). Model terbaik yang terpilih adalah *Random Effect Model* (REM).

Provinsi Sumatera Selatan (disingkat dengan Sumsel) terdiri dari 17 kabupaten/kota dengan luas areal dan hasil produksi kopi terbesar di Indonesia. Area perkebunan kopi di Provinsi Sumsel tersebar hampir di seluruh kabupaten/kota yaitu tersebar di 12 kabupaten/kota [1]. Dalam hal ini faktor-faktor yang mempengaruhi perubahan produksi kopi di Provinsi Sumsel perlu dianalisis.

Tujuan penelitian ini adalah untuk memperoleh model regresi data panel pada faktor-faktor yang menentukan produksi kopi di Provinsi Sumsel tahun 2015-2021. Objek yang diteliti dibatasi pada 12 kabupaten/kota yang mempunyai perkebunan kopi dari 17 kabupaten/kota di Provinsi Sumsel. Variabel yang digunakan adalah produksi (dalam satuan ton), luas TBM (dalam ha), luas TM (dalam ha), luas TTM (dalam ha) dan jumlah petani (dalam satuan KK). Data yang digunakan merupakan data sekunder yang diperoleh dari Direktorat Jenderal Perkebunan (Ditjenbun) pada data fixed (tetap) produksi perkebunan kopi di Provinsi Sumsel tahun 2015-2021.

2. Metoda Penelitian

Langkah-langkah yang dikerjakan pada penelitian ini adalah:

- 1. Mengumpulkan data yang diperoleh dari website Direktorat Jenderal Perkebunan.
- 2. Menentukan model regresi dengan model estimasi yaitu
 - a. Common Effect Model (CEM)

CEM merupakan pendekatan model data panel yang hanya menggabungkan data *time series* dan *cross-section* tanpa melihat perbedaan waktu dan individu sehingga perilaku data diasumsikan sama dalam berbagai waktu [13]. Model persamaan regresinya sebagai berikut:

 $Y_{it} = \beta_0 + \beta_1 X_{1it} + \dots + \beta_K X_{Kit} + \varepsilon_{it}$ (1) dengan Y_{it} : Variabel terikat pada unit observasi ke-*i* dan waktu ke-*t*;

 X_{kit} : Variabel bebas ke-k pada unit observasi ke-i dan waktu ke-t;

 β_k : Koefisien slope; k = 1, 2, ..., K;

 β_0 : Intersep model regresi;

 ε_{it} : Komponen *error* atau galat pada unit observasi ke-*i* dan waktu ke-*t*.

b. Fixed Effect Model (FEM)

FEM merupakan suatu model yang memiliki intersep berbeda antar individu sedangkan slope antar individu adalah tetap [13]. Model persamaan regresinya sebagai berikut:

 $Y_{it} = \beta_{0it} + \beta_1 X_{1it} + \dots + \beta_K X_{Kit} + \varepsilon_{it}$ (2) Model persamaan efek individu:

$$Y_{it} = \sum_{i=1}^{N} \beta_{0i} D_i + \sum_{k=1}^{K} \beta_k X_{kit} + \varepsilon_{it}$$
 (3)

dengan nilai $\beta_{0i} = c + \gamma_1 D_1 + \dots + \gamma_N D_N$

c: konstanta individu pembeda

 γ_i : nilai efek spesifikasi individu ke-i

 D_i : variabel *dummy* individu ke-i

 D_i menunjukkan perbedaan karakteristik individu pada model regresi. D_i bernilai 1 apabila i = N dan selainnya nol.

Model persamaan efek waktu:

$$Y_{it} = \sum_{t=1}^{T} \beta_{0t} D_t + \sum_{k=1}^{K} \beta_k X_{kit} + \varepsilon_{it}$$
 (4)

dengan nilai $\beta_{0t} = c + \hat{\delta}_1 D_1 + \dots + \hat{\delta}_T D_T$ $\hat{\delta}_t$: nilai efek spesifikasi waktu ke-t

 D_t : variabel *dummy* waktu ke-t

 D_t menunjukkan perbedaan karakteristik waktu pada model regresi. D_t bernilai 1 apabila t = T dan selainnya bernilai nol.

c. Random Effect Model (REM)

REM merupakan model regresi dengan asumsi pengaruh individu pada unit *cross-section* dan *time series* sebagai variabel acak yang dimasukkan dalam model sebagai galat. Model persamaan regresinya:

$$Y_{it} = \beta_0 + \beta_1 X_{1it} + \dots + \beta_K X_{Kit} + w_{it}$$
 (5) dengan $w_{it} = u_i + \varepsilon_{it}$

 u_i : Komponen *error* atau galat pada unit observasi ke-i

 ε_{it} : Komponen *error* atau galat pada unit observasi ke-i dan waktu ke-t

- 3. Pemilihan model regresi data panel dengan 3 pengujian yaitu:
 - a. Uji Chow

Uji *Chow* dilakukan untuk memilih model terbaik antara CEM dan FEM. Hipotesis uji pada uji *Chow* adalah uji *F* yaitu:

 $H_0: \beta_{01} = \beta_{02} = \dots = \beta_{0N} = 0$, model terbaik adalah CEM

 H_1 : minimal ada satu i dengan $\beta_{0i} \neq 0$; i = 1, 2, ..., N, model terbaik adalah FEM

Statistik uji yang digunakan adalah:

$$F_{hitung} = \frac{[RSS_1 - RSS_2]/(N-1)}{RSS_2/(NT - N - K)}$$
(6)

dengan *N*: Jumlah unit *cross section*;

T: Jumlah unit *time series*;

K: Jumlah variabel bebas;

RSS₁: residual sums of squares yang berasal dari CEM

RSS₂: residual sums of squares yang berasal dari FEM

b. Uji *Hausman*

Uji *Hausman* dilakukan untuk memilih model terbaik antara FEM dan REM. Hipotesis uji pada Uji *Hausman* sebagai berikut:

 H_0 : korelasi $(X_{it}, \varepsilon_{it}) = 0$, model terbaik adalah REM

 H_1 : korelasi $(X_{it}, \varepsilon_{it}) \neq 0$, model terbaik adalah FEM

Statistik uji yang digunakan pada uji *Hausman* adalah uji *chi-square* berdasarkan kriteria *Wald*, yaitu

$$W = (\widehat{\boldsymbol{\beta}}_{MET} - \widehat{\boldsymbol{\beta}}_{MEA})'$$

$$\left[var(\widehat{\boldsymbol{\beta}}_{MET} - \widehat{\boldsymbol{\beta}}_{MEA})\right]^{-1} (\widehat{\boldsymbol{\beta}}_{MET} - \widehat{\boldsymbol{\beta}}_{MEA})$$
dengan
(7)

 $\widehat{m{eta}}_{MET}$: Vektor estimasi *slope FEM* $\widehat{m{eta}}_{MEA}$: Vektor estmasi *slope REM*

c. Uji Lagrange Multiplier

Uji *Lagrange Multiplier* dilakukan untuk memilih model terbaik antara REM dan CEM. Hipotesis uji pada Uji *Lagrange* sebagai berikut:

 $H_0: \sigma_i^2 = 0, \ \forall_i = 1, ..., N.$ model terbaik adalah CEM

 H_1 : minimal ada satu $\sigma_i^2 \neq 0$, model terbaik adalah REM

Statistik uji yang digunakan pada uji *Lagrange Multiplier* adalah [14]:.

$$LM = \frac{NT}{2(T-1)} \left[\frac{\sum_{i=1}^{N} [\sum_{t=1}^{T} \hat{e}_{it}]^{2}}{\sum_{i=1}^{N} \sum_{t=1}^{T} e_{it}^{2}} - 1 \right]^{2}$$
(8)

dengan \hat{e}_{it} : Residual pada unit ke-*i* dan waktu ke-*t* dari CEM.

- 4. Pengujian asumsi klasik terhadap model terbaik yang terpilih dengan melakukan uji multikolinieritas dan uji heterokedastisitas.
- 5. Pengujian parameter model regresi

a. Uji Serentak (uji
$$F$$
)
$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

$$H_1: \text{minimal ada satu } \beta_k \neq 0;$$

$$k = 1, 2, \dots, K$$

$$F_{hitung} = \frac{R^2}{\frac{N + K - 1}{1 - R^2}}$$
(9)

 R^2 : Koefisien determinasi

Kriteria keputusan pada uji F yaitu jika nilai $F_{hitung} > F_{tabel(\alpha, N+K-1, NT-N-K)}$ maka tolak H_0 artinya variabel bebas secara simultan berpengaruh terhadap variabel terikat.

b. Uji Parsial (uji
$$t$$
)
$$H_0: \beta_k = 0$$

$$H_1: \beta_k \neq 0; \text{ untuk suatu } k;$$

$$k = 0, 1, 2, ..., K$$

$$t = \frac{\hat{\beta}_k}{se(\hat{\beta}_k)}$$
(10)

dengan

 $\hat{\beta}_k$: koefisien regresi masing-masing variabel

 $se(\hat{\beta}_k)$: standar *error* masing-masing variabel

Kriteria keputusan pada uji t yaitu:

- 1. Jika nilai $|t_{hitung}| > t_{tabel\left(\frac{\alpha}{2}, NT-N-K\right)}$ maka tolak H_0 artinya variabel bebas berpengaruh terhadap variabel terikat.
- 2. Jika nilai $|t_{hitung}| < t_{tabel(\frac{\alpha}{2}, NT-N-K)}$ maka terima H_0 artinya varibel bebas tidak berpengaruh terhadap variabel terikat.

c. Uji Koefisien Determinasi (R^2)

Koefisien determinasi digunakan untuk menunjukkan kemampuan garis regresi menerangkan variasi variabel terikat yang dapat dijelaskan oleh variabel bebas. Persamaan R^2 adalah:

$$R^{2} = \frac{SS_{reg}}{SS_{total}} = 1 - \frac{SS_{reg}}{SS_{total}}$$

$$= 1 - \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \hat{Y}_{it})^{2}}{\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \bar{Y}_{it})^{2}}$$
(11)

dimana

SS_{reg}: Nilai sum of square dari persamaan regresi

 SS_{total} : Nilai sum of square Total Y_{it} : nilai aktual individu ke-i waktu ke-t \hat{Y}_{it} : nilai prediksi individu ke-i waktu ke-t.

- Melakukan metode backward untuk memperoleh variabel bebas yang berpengaruh signifikan terhadap model terbaik.
- 7. Melakukan perhitungan MAPE (*Mean Absolute Percentage Error*) menggunakan persamaan:

$$MAPE = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \left| \frac{Y_{it} - \hat{Y}_{it}}{Y_{it}} \right|}{NT} \times 100$$
 (12)

8. Penarikan kesimpulan.

Taraf signifikansi α yang digunakan adalah 5%. Pengolahan data pada pemodelan regresi data panel ini menggunakan *software* Eviews-9.

3. Hasil Penelitian

3.1. Analisis Deskriptif

Hasil deskriptif statistik dapat dilihat pada Tabel 1. Rata-rata nilai setiap variabel dari tahun 2015-2021 cenderung berfluktuasi. Nilai maksimum setiap variabel cenderung konstan dan meningkat sedikit, kecuali untuk nilai maksimum variabel luas TBM (X_1) yang fluktuatif. Nilai maksimum dari luas TBM dan luas TTM pada kabupaten/kota ada yang bernilai 0. Hal ini dimungkinkan karena perkebunan kopi di kabupaten/kota tersebut relatif baru mulai ditanam.

Tabel 1. Deskriptif Statistik Variabel-variabel Penelitian

Variabel	Deskriptif				Tahun			
variabei	Statistik	2015	2016	2017	2018	2019	2020	2021
	Rata-rata	9196	10074	15347	16126	16412	16579	16083
Y	Maksimum	33491	39935	48523	53592	53592	53769	53769
	Minimum	182	182	180	180	184	182	325
	Rata-rata	1706	1892	1899	1582	1606	1565	1605
X_1	Maksimum	7021	8822	7192	6633	7033	7033	7033
	Minimum	0	0	0	0	0	0	0
	Rata-rata	17275	17435	17258	17677	17643	17685	17653
X_2	Maksimum	63190	64412	64697	64710	64904	64985	64904
	Minimum	129	129	129	129	129	129	169
	Rata-rata	1812	2764	1710	1659	1598	1598	1598
X_3	Maksimum	8554	13126	8647	7872	7872	7872	7872
	Minimum	0	59	0	0	11	11	11
	Rata-rata	16838	16700	16796	16799	16735	17572	17624
X_4	Maksimum	65205	65205	65205	65205	65243	75243	75281
	Minimum	222	222	262	272	275	275	315

Keterangan: Y: Total produksi (ton); X_1 : Luas TBM (ha); X_2 : Luas TM (ha); X_3 : Luas TTM (ha); X_4 : Jumlah petani (KK)

3.2. Estimasi Model Regresi Data Panel 3.2.1 *Common Effect Model* (CEM)

Hasil estimasi CEM dengan menggunakan *software* Eviews-9 dapat dilihat pada Tabel 2.

Tabel 2. Hasil Common Effect Model (CEM)

Variabel -	Comm	on Effect I	Model
variabei	Koefisien	t_{hitung}	p-value
С	4108,250	3,370	0,0012
X_1	-0,720	-1,111	0,2699
X_2	1,342	5,481	0,0000
X_3	-1,360	-2,682	0,0089
X_4	-0,568	-2,274	0,0257
R^2			0,778
R ² -adj			0,767
F_{hitung}			69,204
DW_{hitung}			0,654

Pada Tabel 2 diperoleh CEM terhadap total produksi kopi tahun 2015-2021 di Provinsi Sumsel sebagai berikut:

$$\hat{Y}_{it} = 4108,250 - 0,720X_{1it} + 1,342X_{2it} - 1,360X_{3it} - 0,568X_{4it}$$

3.2.2 Fixed Effect Model (FEM)

1. Model Efek Individu

Hasil estimasi FEM efek individu dapat dilihat pada Tabel 3.

Tabel 3. Hasil FEM Efek Individu

Variabel	Fixed Effect Model (FEM) efek individu			
	Koefisien	t_{hitung}	p – value	
С	-56426,10	-1,498	0,1389	
X_1	0,236	0,074	0,9411	
X_2	3,987	1,962	0,0539	
X_3	-0,589	-1,021	0,3109	
X_4	0,089	0,149	0,8817	
R^2			0,861	
R ² -adj			0,831	
F_{hitung}			28,160	
DW_{hitung}			1,062	

Estimasi $\hat{\gamma}$ untuk masing-masing kabupaten/kota menggunakan Eviews-9 dapat dilihat pada Tabel 4.

Tabel 4. Nilai efek spesifikasi individu

i	Kabupaten/kota	$\widehat{\gamma}_i$
1	Ogan Komering Ulu	4423,99
2	Ogan Komering Ilir	54614,19
3	Muara Enim	3761,20
4	Lahat	-97268,75
5	Musi Rawas	49299,25
6	Banyuasin	52003,77
7	Ogan Komering Ulu Selatan	-160481,30
8	Ogan Komering Ulu Timur	54818,99
9	Empat Lawang	-112131,60
10	Musi Rawas Utara	56089,59
11	Pagar Alam	41797,50
12	Lubuk Linggau	53073,12

Hasil estimasi efek individu pada Tabel 4 merupakan pembeda untuk kabupaten/kota di Provinsi Sumsel. Model efek individu terhadap total produksi kopi tahun 2015-2021 sebagai berikut:

$$\begin{split} \hat{Y}_{it} &= \hat{\gamma}_i + c + 0.236X_{1it} + 3.987X_{2it} \\ &- 0.589307X_{3it} + 0.089X_{4it} \\ \hat{Y}_{it} &= \hat{\gamma}_i - 56426.10 + 0.236X_{1it} + 3.987X_{2it} \\ &- 0.589X_{3it} + 0.089X_{4it} \end{split}$$

2. Model Efek Waktu

Hasil estimasi FEM efek waktu dapat dilihat pada Tabel 5.

Tabel 5. Hasil FEM efek waktu

Variabel	Fixed Effect Model (FEM) efek waktu			
variabei	Koefisien	t_{hitung}	p – value	
С	3954,613	3,280	0,0016	
X_1	-0,625	-0,971	0,3348	

Variabel	Fixed Effect I	Fixed Effect Model (FEM) efek waktu		
variabei	Koefisien	t_{hitung}	p-value	
X_2	1,298	5,331	0,0000	
X_3	-1,166	-2,278	0,0256	
X_4	-0,544	-2,196	0,0313	
R^2			0,800	
R ² -adj			0,773	
F_{hitung}			29,288	
DW_{hitung}			0,615	

Estimasi $\hat{\delta}$ untuk masing-masing kabupaten/kota dapat dilihat pada Tabel 6.

Tabel 6. Estimasi model efek waktu

t	Tahun	$\hat{\delta}_t$	
1	2015	-4842,980	
2	2016	-3020,479	
3	2017	1309,366	
4	2018	1289,307	
5	2019	1527,223	
6	2020	2069,285	
7	2021	1688,278	

Hasil estimasi efek waktu pada Tabel 6 merupakan pembeda untuk kabupaten/kota. Model efek waktu terhadap total produksi kopi tahun 2015-2021 di Provinsi Sumsel yang diperoleh sebagai berikut:

$$\begin{split} \hat{Y}_{it} &= \hat{\delta}_t + c - 0.625X_{1it} + 1.298X_{2it} \\ &- 1.166X_{3it} - 0.544X_{4it} \\ \hat{Y}_{it} &= \hat{\delta}_t + 3954.613 - 0.625X_{1it} + 1.298X_{2it} \\ &- 1.166X_{3it} - 0.544X_{4it} \end{split}$$

3.2.3 Random Effect Model (REM)

Hasil estimasi REM dapat dilihat pada Tabel 7.

Tabel 7. Hasil Random Effect Model (REM)

Variabel	Rand	om Effect Mo	odel
variabei	Koefisien	t_{hitung}	p-value
\hat{eta}_0	3867,495	1,900	0,0610
X_1	-1,408	-1,422	0,1589
X_2	1,080	3,327	0,0013
X_3	-0,776	-1,495	0,1388
X_4	-0,278	-0,807	0,4223
R^2			0,542
R ² -adj			0,519
F_{hitung}			23,379
DW_{hitung}			0,758

Estimasi *error* setiap kabupaten/kota dapat dilihat pada Tabel 8.

Tabel 8. Komponen *error* kabupaten/kota

i	Kabupaten/kota	Komponen
	Kaoupaten/kota	$error(u_i)$
1	Ogan Komering Ulu	4037,640
2	Ogan Komering Ilir	-2338,594
3	Muara Enim	8179,672
4	Lahat	-2920,664
5	Musi Rawas	-1127,779
6	Banyuasin	-2414,571
7	Ogan Komering Ulu Selatan	-935,8974
8	Ogan Komering Ulu Timur	-796,7006
9	Empat Lawang	-2034,572
10	Musi Rawas Utara	-2727,053
11	Pagar Alam	5597,755
12	Lubuk Linggau	-2519,236

Hasil estimasi *error* pada Tabel 8 merupakan pembeda untuk kabupaten/kota. Pada Tabel 8 diperoleh REM terhadap total produksi kopi tahun 2015-2021 di Provinsi Sumsel sebagai berikut:

$$\hat{Y}_{it} = \hat{\beta}_0 + u_i - 1,408X_{1it} + 1,080X_{2it} - 0,776X_{3it} - 0,278X_{4it}$$

$$\hat{Y}_{it} = 3867,495 + u_i - 1,408X_{1it} + 1,080X_{2it} - 0,776X_{3it} - 0,278X_{4it}$$

3.3. Pemilihan Model Regresi Data Panel 3.3.1. Uji *Chow*

Hasil perhitungan uji *Chow* pada model efek individu dengan menggunakan Persamaan (6) adalah sebagai berikut:

$$F_{hitung} = \frac{(RSS_1 - RSS_2)/(N-1)}{RSS_2/(NT - N - K)}$$

$$F_{hitung} = \frac{\frac{5,25 \times 10^{-9} - 3,28 \times 10^{-9}}{12 - 1}}{\frac{3,28 \times 10^{-9}}{84 - 12 - 4}} = 3,7129$$

Hasil uji *Chow* menggunakan *software* Eviews-9 dapat dilihat pada Tabel 9 berikut.

Tabel 9. Hasil uji Chow			
Effect Test	Statistic	d.f.	Prob.
Cross-section F	3,7166	(11,68)	0,0004
Period F	1,3725	(6,73)	0,2372

Hasil perhitungan uji *Chow* pada model efek individu menggunakan Persamaan (6) dan *software* Eviews-9 menghasilkan nilai $F_{hitung} = 3,7166 > F_{0,05(11, 68)} = 1,9325$ dan p-value = 0,0004 < 0,05 maka tolak

 H_0 yang artinya ada perbedaan karakteristik antar individu atau wilayah kabupaten/kota.

Hasil perhitungan uji *Chow* pada model efek waktu menggunakan *software* Eviews-9 menghasilkan nilai $F_{hitung} = 1,3725 < F_{0,05(6,73)} = 2,2256$ dan p-value = 0,2372 > 0,05 maka terima H_0 yang artinya tidak ada perbedaan karakteristik antar waktu berdasarkan tahun antar kabupaten/kota.

3.3.2. Uji Hausman

Hasil uji *Hausman* menggunakan *software* Eviews-9 dapat dilihat pada Tabel 10.

Tabel 10. Hasil uii *Hausman*

raber 10. Hash aji Hausman		
Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
7,4418	4	0,1143

Pada Tabel 10 menghasilkan nilai $W_{hitung} = 7,44 < \chi^2_{(0,05;4)} = 9,49$ atau p - value = 0,1143 > 0,05 maka terima H_0 , yang artinya model terbaik yang terpilih pada uji Hausman yaitu REM.

3.3.3. Uji Lagrange Multiplier

Hasil pengolahan uji *Lagrange Multiplier* dapat dilihat pada Tabel 11 berikut.

Tabel 11. Hasil uji Lagrange Multiplier

LM_{hitung}	Prob.
8,5137	0,0035

Hasil perhitungan uji Lagrange Multiplier menunjukkan nilai p-value=0,0035 < 0,05 maka tolak H_0 , yang artinya model terbaik yang terpilih pada uji Lagrange Multiplier yaitu REM.

3.4. Uji Asumsi Klasik

Berdasarkan uji Lagrange Multiplier model terbaik yang terpilih adalah REM, maka uji asumsi klasik tidak perlu dilakukan karena diasumsikan metode estimasi Generalized Least Square (GLS) dapat mengatasi heteroskedastisitas dan autokorelasi [10].

3.5. Pegujian Parameter Model Regresi 3.5.1. Uji Simultan (Uji F)

Hasil perhitungan menggunakan software Eviews-9 menunjukkan nilai $F_{hitung} = 23,37892 > F_{0,05(15, 68)} = 1,8160$ dan nilai $p - value = 0,0000 < \alpha = 0,05$ maka tolak H_o , artinya secara simultan variabel luas lahan TBM, luas lahan TM, luas lahan TTM dan jumlah petani berpengaruh secara signifikan terhadap total produksi perkebunan kopi di Provinsi Sumsel tahun 2015-2021.

3.5.2. Uji Parsial (Uji *t*)

Hasil uji *t* untuk masing-masing variabel dapat dilihat pada Tabel 12 berikut.

Tabel 12. Hasil uji parsial (uji *t*) REM

Variabel	$\left t_{hitung} ight $	p – value	t_{tabel}
X_1	1,4223	0,1589	1,6676
X_2	3,3271	0,0013	1,6676
X_3	1,4952	0,1388	1,6676
X_4	0,8066	0,4223	1,6676

Pada Tabel 12, variabel luas lahan TBM (X_1) menunjukkan nilai $t_{hitung} = 1,4223 < t_{tabel} = 1,6676$ dan p-value = 0,1589 > 0,05 maka terima H_0 , artinya dengan taraf signifikansi $\alpha = 5\%$ variabel luas TBM berpengaruh negatif dan tidak signifikan terhadap produksi kopi.

Variabel luas lahan TM (X_2) menunjukkan nilai $t_{hitung} = 3,3271 > t_{tabel} = 1,6676$ dan p-value = 0,0013 < 0,05 maka tolak H_0 , artinya variabel luas TM berpengaruh positif dan signifikan terhadap produksi kopi.

Pada variabel luas lahan TTM (X_3) menunjukkan nilai $t_{hitung} = 1,4952 < t_{tabel} = 1,6676$ dan p - value = 0,1388 > 0,05 maka terima H_0 , artinya variabel luas TTM berpengaruh negatif dan tidak signifikan terhadap produksi kopi.

Pada variabel jumlah petani (X_4) menunjukkan nilai $t_{hitung} = 0.8066 < t_{tabel} = 1,6676$ dan p - value = 0,4223 > 0,05 maka terima H_0 , artinya variabel jumlah petani berpengaruh negatif dan tidak signifikan terhadap produksi kopi.

Hasil uji parsial (uji t) pada REM menunjukkan bahwa hanya variabel bebas luas

TM yang berpengaruh signifikan terhadap total produksi kopi di Provinsi Sumsel.

3.5.3. Uji Koefisien Determinasi (R^2)

Hasil koefisien determinasi (R^2) dan R^2 adj dari model REM secara berturut-turut
sebesar adalah 0,5421 dan 0,5189. Secara
simultan semua variabel bebas luas lahan TBM,
luas lahan TM, luas lahan TTM, dan jumlah
petani mampu menjelaskan variabel total
produksi perkebunan kopi di Provinsi Sumsel
sebesar 54,21%, sedangkan sisanya dijelaskan
oleh varabel lain diluar model.

3.6. Pemilihan Model Terbaik dari Setiap CEM, FEM, dan REM

Pada uji parsial pada REM terdapat 3 variabel bebas yang tidak signifikan, untuk itu perlu dilakukan pemilihan model terbaik dari setiap CEM, FEM dan REM dengan eleminasi mundur menggunakan metode *backward*. Sama seperti pemodelan dan pemilihan model regresi data panel seperti Subbab 3.2 sampai 3.5, maka model terbaik yang didapat dibandingkan dan dianalisis lebih lanjut.

3.6.1. Pemilihan Model Regresi Data Panel tanpa Variabel X₁

Berikut langkah-langkah dalam pemilihan model regresi data panel tanpa X_1 : 1. *Common Effect Model* tanpa variabel X_1

Tabel 13. Hasil Common Effect Model (CEM) tanpa variabel X₁

variabel X1				
37 1	Common Effect Model			
Variabel	Koefisien t_{hitung}		p – value	
С	3828,387	3,205	0,0019	
X_2	1,399	5,841	0,0000	
X_3	-1,380	-2,720	0,0080	
X_4	-0,680	-2,976	0,0039	
R^2			0,775	
R ² -adj			0,766	
F_{hitung}			91,592	
DW_{hitung}			0,627	

Pada Tabel 13 diperoleh CEM tanpa variabel X_1 terhadap total produksi kopi tahun 2015-2021 di Provinsi Sumsel sebagai berikut:

$$\hat{Y}_{it} = 3828,387 + 1,399X_{2it} - 1,380X_{3it} - 0,680X_{4it}$$

2. Fixed Effect Model tanpa variabel X_1

Tabel 14. Hasil FEM efek individu tanpa variabel X_1

Variabel	Fixed Effect Model			
variabei	Koefisien t_{hitung}		p – value	
С	-54147,48	-2,500	0,0148	
X_2	3,868	3,110	0,0027	
X_3	-0,581	-1,033	0,3054	
X_4	0,100	0,174	0,8620	
R^2			0,861	
R ² -adj			0,833	
F_{hitung}			30,612	
DW_{hitung}			1,068	

Model efek individu tanpa variabel X_1 terhadap total produksi kopi tahun 2015-2021 pada Tabel 14 sebagai berikut:

$$\hat{Y}_{it} = \hat{\gamma}_i + c + 3,868X_{2it} - 0,581X_{3it} + 0,100X_{4it}$$

$$\hat{Y}_{it} = \hat{\gamma}_i - 54147,48 + 3,868X_{2it} - 0,581X_{3it} + 0,100X_{4it}$$

Nilai estimasi efek individu dapat dilihat pada Tabel 15.

Tabel 15. Estimasi nilai FEM efek individu tanpa X_1

i	Kabupaten/kota	$\hat{\gamma}_i$
1	Ogan Komering Ulu	4453,11
2	Ogan Komering Ilir	52382,15
3	Muara Enim	4404,55
4	Lahat	-93272,02
5	Musi Rawas	47451,64
6	Banyuasin	49858,40
7	Ogan Komering Ulu Selatan	-154932,4
8	Ogan Komering Ulu Timur	52675,59
9	Empat Lawang	-108331,2
10	Musi Rawas Utara	53836,50
11	Pagar Alam	40505,67
12	Lubuk Linggau	50968,08

Pada Tabel 15 diperoleh model efek individu tanpa variabel X_1 terhadap total produksi kopi tahun 2015-2021 sebagai berikut:

$$\begin{split} \hat{Y}_{it} &= \hat{\gamma}_i + c + 3,868X_{2it} - 0,581X_{3it} \\ &\quad + 0,100X_{4it} \\ \hat{Y}_{it} &= \hat{\gamma}_i - 54147,48 + 3,868X_{2it} \\ &\quad - 0,581X_{3it} + 0,100X_{4it} \end{split}$$

Tabel 16. Hasil FEM efek waktu tanpa variabel X_1

	Fixed Effect Model			
Variabel	Koefisien	t_{hitung}	p-value	
С	3707,800	3,1472	0,0024	
X_2	1,346	5,6526	0,0000	
X_3	-1,176	-2,2993	0,0243	
X_{4}	-0,640	-2,8247	0,0061	

R^2	0,798
R^2 -adj	0,773
F_{hitung}	32,463
DW_{hitung}	0,590

Tabel 17. Estimasi nilai FEM efek waktu tanpa X_1

t	Tahun	$\hat{\delta}_t$
1	2015	-4855,461
2	2016	-3160,657
3	2017	1172,131
4	2018	1329,114
5	2019	1547,067
6	2020	2193,576
7	2021	1774,230

Pada Tabel 17 diperoleh model efek waktu tanpa variabel X_1 terhadap total produksi kopi tahun 2015-2021 sebagai berikut:

$$\begin{split} \hat{Y}_{it} &= \hat{\delta}_t + c + 1,346X_{2it} - 1,176X_{3it} \\ &- 0,640X_{4it} \\ \hat{Y}_{it} &= \hat{\delta}_t + 3707,800 + 1,346X_{2it} \\ &- 1,176X_{3it} - 0,640X_{4it} \end{split}$$

3. Random Effect Model tanpa variabel X_1

Tabel 18. Hasil REM tanpa variabel X_1

Random Effect Model			
Koefisien	t_{hitung}	p – value	
3314,633	1,763	0,0817	
1,188	3,885	0,0002	
-0,834	-1,633	0,1064	
-0,491	-1,623	0,1085	
		0,553	
		0,536	
		32,976	
		0,682	
	Koefisien 3314,633 1,188 -0,834	Koefisien thitung 3314,633 1,763 1,188 3,885 -0,834 -1,633	

Pada Tabel 18 diperoleh REM tanpa variabel X_1 terhadap total produksi kopi tahun 2015-2021 di Provinsi Sumsel:

$$\begin{split} \hat{Y}_{it} &= \hat{\beta}_0 + u_i + 1{,}188X_{2it} - 0{,}834X_{3it} \\ &- 0{,}491X_{4it} \\ \hat{Y}_{it} &= 3314{,}633 + 1{,}188X_{2it} - 0{,}834X_{3it} \\ &- 0{,}491X_{4it} \end{split}$$

4. Uji *Chow* tanpa variabel X_1

Pada Tabel 19, hasil uji *Chow* model efek individu tanpa variabel X_1 menghasilkan nilai $F_{hitung} = 3.9273 > F_{0.05(11,68)} = 1.9303$ dan nilai p - value = 0.0002 < 0.05 maka tolak H_0 , artinya model terbaik yang terpilih pada uji

Chow model efek individu tanpa variabel X_1 yaitu FEM.

Tabel 19. Hasil uji *Chow* tanpa variabel X_1

Effect Test	Statistic	d.f.	Prob.
Cross-section F	3,9273	(11,69)	0,0002
Period F	1,4280	(6,74)	0,2154

Hasil uji *Chow* model efek waktu tanpa variabel X_1 menghasilkan nilai $F_{hitung} = 1,4280 < F_{0,05(6,74)} = 2,2238$ dan nilai p - value = 0,2154 > 0,05 maka terima H_0 , artinya model terbaik yang terpilih pada uji *Chow* model efek waktu tanpa variabel X_1 yaitu CEM.

5. Uji *Hausman* tanpa variabel X_1

Hasil uji *Hausman* tanpa variabel X_1 menghasilkan nilai $W_{hitung} = 9,72 > \chi^2_{(0,05;3)} = 7,82$ atau p-value = 0,0211 < 0,05 maka tolak H_0 , yang artinya model terbaik yang terpilih pada uji *Hausman* tanpa variabel X_1 yaitu FEM.

6. Pemilihan efek spesifikasi satu arah

Hasil uji *Hausman* menunjukkan model terbaik yang terpilih yaitu FEM, untuk itu perlu dilakukan pemilihan efek spesifikasi satu arah dengan melihat nilai R^2 yang paling besar antara FEM efek individu dan FEM efek waktu. FEM efek individu dan efek waktu tanpa variabel X_1 Pada hasil Eviews-9 didapat nilai $R_{efek\ individu}^2 = 0,861 > R_{efek\ waktu}^2 = 0,798$, artinya FEM efek individu adalah model terbaik dalam menjelaskan tingkat keragaman total produksi pada seluruh kabupaten/kota di Provinsi Sumsel tahun 2015-2021.

7. Uji Simultan (Uji F) tanpa variabel X_1

Hasil uji serentak (uji F) FEM efek individu tanpa variabel X_1 menghasilkan nilai $F_{hitung} = 30,61247 > F_{0,05(14, 69)} = 1,8357$ dan p-value = 0,0000 < 0,05 maka tolak H_o , artinya secara simultan variabel bebas berpengaruh secara signifikan terhadap total produksi perkebunan kopi di Provinsi Sumsel tahun 2015-2021.

8. Uji Parsial (uji t) tanpa variabel X_1

Pada Tabel 20, hasil uji t FEM efek individu tanpa variabel X_1 menunjukkan bahwa dengan taraf signifikansi 5% hanya variabel

bebas X_2 yang berpengaruh signifikan terhadap total produksi kopi di Provinsi Sumsel.

Tabel 20. Hasil uji t FEM efek individu tanpa X_1

Variabel	t_{hitung}	p – value	t_{tabel}
X_2	-2,4998	0,0027	1,6676
X_3	3,1104	0,3054	1,6676
X_4	-1,0325	0,8620	1,6677

3.6.2. Pemilihan Model Regresi Data Panel tanpa Variabel X_1, X_3 , dan X_4

Pemilihan Model Regresi Data Panel tanpa Variabel X_1, X_3 , dan X_4 dilakukan dengan cara yang sama. Hasil akhir yang didapat adalah:

1. Model CEM tanpa variabel X_1 , X_3 , dan X_4 :

 $\hat{Y}_{it} = 2704,339 + 0,659612X_{2it}$ dengan variabel bebas X_2 signifikan terhadap variabel terikat yaitu nilai $p - value < \alpha = 0,05$. Nilai R^2 sebesar 0,744258 yang berarti tingkat keragaman nilai variabel terikat total produksi dapat dijelaskan oleh variabel bebas dalam model sebesar 74% dan sisanya dijelaskan oleh variabel lain diluar model sebesar 26%.

2. Model FEM tanpa variabel X_1 , X_3 , dan X_4 . Model efek individu yang adalah:

$$\hat{Y}_{it} = \hat{\gamma}_i + c + 3,868X_{2it}$$

$$\hat{Y}_{it} = \hat{\gamma}_i - 52517,81 + 3,812X_{2it}$$

Variabel bebas X_2 signifikan terhadap variabel terikat dengan nilai $p-value=0.0022 < \alpha=0.05$. Nilai R^2 yang dihasilkan sebesar 0,859, yang berarti tingkat keragaman nilai variabel terikat total produksi secara simultan dapat dijelaskan oleh semua variabel bebas dalam model sebesar 86% dan sisanya dijelaskan oleh variabel lain diluar model sebesar 14%.

Sedangkan hasil estimasi FEM efek waktu adalah:

$$\hat{Y}_{it} = \hat{\delta}_t + c + 0.659X_{2it}$$

$$\hat{Y}_{it} = \hat{\delta}_t + 2716.53 + 0.659X_{2it}$$

Variabel bebas X_2 signifikan terhadap variabel terikat dengan nilai $p-value < \alpha = 0.05$. Nilai R^2 sebesar 0,774 yang berarti tingkat keragaman nilai variabel terikat total produksi secara simultan dapat dijelaskan oleh semua variabel bebas dalam model sebesar 77,4% dan

sisanya dijelaskan oleh variabel lain diluar model sebesar 22,6%.

3. Model REM tanpa variabel X_1 , X_3 dan X_4 adalah:

$$\hat{Y}_{it} = 2522,188 + u_i + 0,670X_{2it}$$

Variabel bebas X_2 signifikan terhadap variabel terikat dengan nilai $p - value = 0,0000 < \alpha = 0,05$. Nilai R^2 sebesar 0,464 yang berarti tingkat keragaman nilai variabel terikat total produksi secara simultan dapat dijelaskan oleh semua variabel bebas dalam model sebesar 46% dan sisanya dijelaskan oleh variabel lain diluar model sebesar 54%.

4. Uji *Chow* tanpa variabel X_1 , X_3 dan X_4 pada efek individu menghasilkan nilai $F_{hitung} = 5,259 > F_{0,05(11,71)} = 1,9262$ dan $p - value = 0,0000 < \alpha = 0,05$ maka tolak H_0 , artinya model terbaik yang terpilih adalah model efek individu tanpa variabel X_1 , X_3 dan X_4 yaitu FEM.

Hasil uji *Chow* pada efek waktu tanpa variabel X_1 , X_3 , dan X_4 menghasilkan nilai $F_{hitung} = 1,645 < F_{0,05(6,76)} = 2,2204$ dan $p - value = 0,1465 > \alpha = 0,05$ maka terima H_0 , artinya model terbaik yang terpilih pada uji *Chow* pada efek waktu tanpa variabel X_1 , X_3 dan X_4 yaitu CEM.

5. Uji *Hausman* tanpa variabel X_1 , X_3 , dan X_4

Nilai $W_{hitung} = 6.91 > \chi^2_{(0,05;1)} = 3.48$ atau p - value = 0.0086 < 0.05 maka tolak H_0 , yang artinya model terbaik yang terpilih pada uji Hausman tanpa variabel X_1, X_3 , dan X_4 yaitu FEM.

6. Pemilihan efek spesifikasi satu arah

Hasil uji *Hausman* tanpa variabel X_1, X_3 , dan X₄ menunjukkan model terbaik yang terpilih yaitu FEM, untuk itu perlu dilakukan pemilihan efek spesifikasi satu arah dengan melihat nilai R^2 yang paling besar antara FEM efek individu dan FEM efek waktu. Hasil Eviews-9 FEM efek individu dan efek waktu tanpa variabel X_1, X_3 , dan X_4 menghasilkan nilai $R_{efek\ individu}^2 > R_{efek\ waktu}^2$ 0.859 > 0.774. Dalam hal ini, FEM efek individu adalah model terbaik dalam

menjelaskan tingkat keragaman total produksi pada seluruh kabupaten/kota di Provinsi Sumsel tahun 2015-2021.

7. Uji Simultan (Uji F) tanpa variabel X_1, X_3 , menghasilkan nilai dan p- $36,06730 > F_{0,05(12,71)} = 1,8912$ value = 0,0000 < 0,05 maka tolak H_0 , artinya secara simultan variabel bebas X_2 berpengaruh secara signifikan terhadap total produksi perkebunan kopi di Provinsi Sumsel tahun 2015-2021.

8. Uji Parsial (Uji t) tanpa variabel X_1 , X_3 , $dan X_4$ menghasilkan $t_{hitung} = 3,183$ dan p - value = 0.0022 < 0.05menunjukkan bahwa dengan taraf signifikansi 5% variabel bebas X_2 berpengaruh signifikan terhadap total produksi kopi di Provinsi Sumsel.

3.7 Interpretasi Hasil

Setelah dilakukan estimasi model regresi data panel dan pemilihan model regresi terbaik tanpa variabel X_1, X_3 dan X_4 maka pada penelitian ini diperoleh model terbaik yaitu Fixed Effect Model (FEM) efek individu, dengan konstanta individu pembeda c =-52517,81. Bentuk umum model regresi data panel model terbaik secara umum sebagai berikut:

$$\hat{Y}_{it} = \hat{\gamma}_i + c + 3.812 X_{2it}$$

 $\hat{Y}_{it} = \hat{\gamma}_i + c + 3.812 X_{2it}$ Indeks $i = 1, 2 \dots, 12$ merupakan kabupaten/ kota dan t = 1, 2, ..., 7 merupakan tahun 2015 sampai 2021. Nilai konstanta pada model efek individu yaitu $\hat{\beta}_{0i} = -52517,81 + \hat{\gamma}_i$, dengan $\hat{\gamma}_i$ merupakan efek individu/wilayah sebagai variabel dummy yang menjadi pembeda kabupaten/kota di Provinsi Sumsel. Tabel 4.27 menghasilkan nilai R² sebesar 0,859 vang berarti tingkat keragaman nilai variabel terikat total produksi dapat dijelaskan oleh variabel bebas dalam model sebesar 86% dan sisanya dijelaskan oleh variabel lain diluar model sebesar 14%.

Model regresi data panel dapat juga digunakan untuk melakukan peramalan variabel terikat untuk setiap individu dalam beberapa tahun mendatang, dengan syarat nilai variabel prediktor untuk setiap individu selama tahun tersebut diketahui. Pada penelitian ini digunakan metode Mean Absolute Percentage Error (MAPE) dengan hasil prediksi disajikan pada Tabel 21 berikut:

Tabel 21. Hasil prediksi dengan metode MAPE

, :	Kabupaten/kota	Tahun	Nilai aktual (Y _{it})	Nilai Prediksi (\hat{Y}_{it})	$\left \frac{Y_{it} - \hat{Y}_{it}}{Y_{it}}\right $
1	OKU	2015	15992	16935	0,059
2	OKI	2015	636	791	0,244
3	Muara Enim	2015	25147	26296	0,046
' 4	Lahat	2015	21175	14287	0,325
1 ;	:	:	÷	:	:
84	Lubuk Linggau	2021	877	616	0,297
Jui	mlah	•			37,816

Hasil perhitungan menggunakan Persamaan (12) dapat dilihat sebagai berikut:

$$MAPE = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \left| \frac{Y_{it} - \hat{Y}_{it}}{Y_{it}} \right|}{NT} \times 100$$
$$= \frac{37,816}{84} \times 100$$
$$= 45,02\%$$

Pada Tabel 21 menunjukkan nilai selisih dari nilai aktual dan nilai prediksi pada model regresi data panel model efek individu sehingga menghasilkan MAPE sebesar 45,02%, artinya penggunaan model regresi data panel efek individu dalam memprediksi total produksi kopi setiap kabupaten/kota di Provinsi Sumsel tahun 2015-2021 dapat dikategorikan layak digunakan

4. Kesimpulan

Berdasarkan hasil pembahasan diperoleh model terbaik yang digunakan untuk produksi kopi di Provinsi Sumatera Selatan (Sumsel) tahun 2015-2021 yaitu Fixed Effect Model (FEM). Hasil estimasi FEM menunjukkan hanya ada satu variabel yang menentukan produksi kopi yaitu luas lahan TM (X_2) . Model regresi data panel yang diperoleh adalah sebagai berikut:

$$\hat{Y}_{it} = \hat{\gamma}_i - 52517,81 + 3,812X_{2it}$$

Model tersebut menunjukkan bahwa variabel
luas lahan Tanaman Menghasilkan (TM) yang

berpengaruh signifikan terhadap produksi kopi di Provinsi Sumsel. Tingkat keragaman nilai variabel produksi kopi yang dapat dijelaskan oleh variabel luas lahan TM sebesar 85,91%.

5. Saran

Saran bagi penelitian selanjutnya adalah memodelkan produksi kopi provinsi-provinsi di Indonesia, dengan menambahkan variabelvariabel lain pada data Ditjenbun, yaitu luas area Perusahaan Besar Negara (PBN), luas area Perusaaan Besar Swasta (PBS), jumlah tenaga kerja, beserta produksinya, dan luas area total perkebunan kopi di setiap provinsi. Dengan penambahan variabel diharapkan model regresi data panel yang didapat lebih baik.

6. Daftar Pustaka

- [1] Direktorat Jenderal Perkebunan, *Statistik Perkebunan Unggulan Nasional*, 2021.
- [2] D. C. Nugroho and A. Y. Kholil, "Prospek Peningkatan Produksi Kopi di Indonesia," pp. 1–16, 2020.
- [3] Irmeilyana, Ngudiantoro, A. Desiani, and D. Rodiah, "Deskripsi Hubungan Luas Areal dan Produksi Perkebunan Kopi di Provinsi Sumatera Selatan," 2019.
- [4] Irmeilyana, Ngudiantoro, A. Desiani, and D. Rodiah, "Deskripsi Hubungan Luas Areal dan Produksi Perkebunan Kopi di Indonesia Menggunakan Analisis Bivariat dan Analisis Klaster," *Infomedia*, vol. 4, no. 1, pp. 21–27, 2019, [Online]. Available: http://e-jurnal.pnl.ac.id/index.php/infomedia/article/view/936/915.
- [5] A. Mendo, M. M. J Kapa, and K. Herewila, "Faktor-Faktor yang Mempengaruhi Produksi Kopi Arabika Bajawa. Studi Kasus di Desa Beiwali, Kecamatan Bajawa Kabupaten Ngada," *Bul. Ilm. IMPAS*, vol. 20, no. 02, pp. 1–9, 2019.

- [6] Irmeilyana, Ngudiantoro, and M. N. Samsuri, "Binary Logistic Regression Modeling on Net Income of Pagar Alam Coffee Farmers," vol. 2, no. 2, pp. 137–156, 2020.
- [7] Irmeilyana, Ngudiantoro, and D. Rodiah, "Correspondence Analysis pada Hubungan Faktor-Faktor yang Mempengaruhi Pendapatan Petani Kopi Pagaralam," vol. 15, no. 1, pp. 179–192, 2021.
- [8] Irmeilyana, M. N. Samsuri, and B. Suprihatin, "Logistic Regression Model on Land Productivity of Pagar Alam Coffee Farming Logistic Regression Model on Land Productivity of Pagar Alam Coffee Farming," 2021, doi: 10.1088/1742-6596/1943/1/012135.
- [9] Irmeilyana, Ngudiantoro, and D. Rodiah, "Deskripsi Profil dan Karakter Usaha Tani Kopi Pagar Alam Berdasarkan Descriptive Statistics dan Korelasi," vol. 4, no. 2, pp. 60– 68, 2019.
- [10] D. N. Gujarati and D. C. Porter, *Dasar-dasar Ekonometrika*, 5th-Buku 1st ed. Jakarta: Salemba Empat, 2012.
- [11] M. A. D. N. Achadin, "Analisis Faktor yang Mempengaruhi Produksi Tebu pada Sub Sektor Perkebunan di Provinsi Jawa Timur Tahun 2011-2015," *J. Ekon. Pembang.*, vol. 15, no. 2, p. 193, 2017, doi: 10.22219/jep.v15i2.8432.
- [12] S. N. Valen and A. Kesumawati, "Analisis Faktor-Faktor yang Mempengaruhi Produksi Komoditi Olahan untuk Ekspor pada Kabupaten Cilacap Menggunakan Regresi Data Panel," no. September, pp. 1–9, 2018.
- [13] D. A. Nandita, L. B. Alamsyah, E. P. Jati, and E. Widodo, "Regresi Data Panel untuk Mengetahui Faktor-Faktor yang Mempengaruhi PDRB di Provinsi DIY Tahun 2011-2015," *Indones. J. Appl. Stat.*, vol. 2, no. 1, p. 42, 2019, doi: 10.13057/ijas.v2i1.28950.
- [14] W. H. Greene, *Econometric Analysis*, 7th ed. New York: Prentice Hall, 2013.