Received: June 2020 Accepted: August 2020 Published: October 2020

Analisis Stabilitas Kapal Ikan Katamaran Daerah Perairan Kalimantan Timur

Alamsyah^{1*}, Wira Setiawan², Elyazha D. C³

^{1,2,3}Institut Teknologi Kalimantan

*alamsyah@lecturer.it.ac.id

Abstract

This paper discusses fishermen who have modified fishing vessels to get a greater number of captures, so that the technical requirements of the ship are not met. Catamaran hull shape has a wider deck surface and has a good level of safety. The purpose of this study is to analyze the stability of fishing vessels when operating. The method used is ship basic data and optimization methods using maxsurf software. The results showed the stability curve area at a heeling of 0° - 30° , 0° - 40° , and 30° - 40° , there was a reduction in the area from loadcase 1 to loadcase 3. The actual GM is above the minimum GM while the actual maximum GZ value occurs above the 10° heeling. All variable values of catamaran hull ship stability value meet the criteria in accordance with IMO A. 749 chapter 3 regulations and High Speed Craft 2000 annex 7 Multihull.

Key words: Stability, Loadcase, Fishing Vessels, Catamaran

Abstrak

Makalah ini membahas tentang nelayan yang telah memodifikasi kapal ikan untuk mendapatkan jumlah tangkap yang lebih besar, sehingga persyaratan teknis kapal tidak terpenuhi. Bentuk lambung katamaran mempunyai permukaan deck yang lebih luas dan mempunyai tingkat keselamatan yang baik. Tujuan penelitian menganalisa stabilitas kapal ikan ketika beroperasi. Metode yang digunakan adalah ship basic data dan metode optimasi menggunakan software maxsurf. Hasil penelitian didapatkan area kurva stabilitas pada kemiringan 0°-30°, 0°-40°, dan 30°-40°, terjadi reduksi luasan dari loadcase 1 menuju loadcase 3. GM aktual berada di atas GM minimum sedangkan nilai GZ maksimum aktual terjadi di atas kemiringan 10°. Semua variabel nilai stabilitas kapal ikan lambung katamaran memenuhi kriteria regulasi IMO A. 749 bagian 3 dan High Speed Craft 2000 annex 7 Multihull.

Kata kunci :Stabilitas, skenario pemuatan, Kapal Ikan, Katamaran

1. Pendahuluan

Pembuatan Kapal perikanan di Kalimantan masih bersifat tradisional, yakni berdasarkan kebiasaan masyarakat secara turun temurun didasari tanpa dengan perhitungan arsitektur perkapalan (naval architec) dan gambar rancangan umum (general arangement), gambar rencana garis (lines plan), deck profile, bodyplan dan profile construction [11]. Desain kapal tradisional yang digunakan dalam sektor perikanan di Indonesia adalah kapal dengan satu lambung. Bagaimanapun, dengan perkembangan perikanan di daerah pantai, kebutuhan akan

desain kapal baru di daerah tersebut adalah nyata. Nelayan telah berusaha semakin mendesain kapal tradisional yang digunakan untuk berbagai jenis ikan, akibatnya kapal terlalu lebar atau terlalu luas bila dibandingkan dengan panjangnya. Ini mengakibatkan kapal tidak efisien kecepatannya dan geladak yang tidak sesuai sehingga perbandingan panjang dan lebar (L/B) menjadi sangat kecil [5]. Nilai (L/B)yang relatif kecil dan mendekati batas bawah menunjukkan bahwa tahanan gerak yang dialami kapal cukup besar sehingga berdampak negatif terhadap kecepatan kapal

[10], meskipun jika ditinjau dari segi stabilitas akan meningkatkan kemampuan stabilitas kapal [12]. Untuk mendapatkan nilai stabilitas, kemampuan olah gerak hambatan gerak yang sesuai dengan kebutuhan kapal penangkap ikan, maka perlu dilakukan kajian untuk menentukan nilai rasio dimensi utama kapal yang optimal [4]. Nilai rasio dimensi utama yang tepat, dapat dijadikan sebagai kontrol desain kapal yang akan dibangun saat ini dan di masa yang akan datang [9]. Selain itu pembangunan kapal ikan tradisional kurang mengadopsi beberapa aspek keselamatan di laut, ini dapat dilihat pada stabilitas kapal yang di hasilkan [1]. Ukuran kapal yang tidak sesuai dengan rasio ukuran utama akan memberikan efek fungsi kapal yang tidak efektif dan efesien ketika kapal beroperasi. Pada penelitian ini hanya membahas stabilitas kapal dengan bentuk lambung katamaran. Bentuk lambung katamaran mempunyai beberapa keuntungan jika dibandingkan dengan bentuk lambung tunggal atau monohull antara lain; mempunyai hambatan yang relatif kecil, stabilitas yang cukup baik, luas permukaan deck yang lebih luas dan mempunyai tingkat keselamatan yang baik[3, 8].

2. Metode Penelitian

Metode yang digunakan adalah ship basic data dan metode optimasi menggunakan software maxsurf. Sebuah kapal ikan sampel lambung katamaran dijadikan sebagai objek penelitian. Kapal ikan tersebut analisastabilitasnya dalam beberapa skenario pemuatan (load case). Untuk mengetahui kondisi stabilitas kapal dilakukan beberapa tahap. Tahap pertama pemilihan sampel kapal ikan dengan type lambung katamaran dari penelitian sebelumnya. Data yang diperlukan berupa ukuran utama kapal seperti $L_{OA}, L_{PP}, B, B1, T, H, \text{dan } V_s[2].$

Tahap kedua adalah pemodelan lambung katamaran kapal ikan yang bertujuan untuk mengetahui bentuk lambung dan pola lambung. Pemodelan lambung kapal ikan menggunakan bantuan *software maxurf*

(*maxurf modeler*). Variabel yang dibutuhkan dalam memodelkan lambung kapal ikan pada yakni L_{OA} , B, H, T, dan L_{WL} .

Tahap ketiga adalah analisa stabilitas kapal ikan katamaran untuk mengetahui karakteristik kapal pada saat oleng karena pengaruh muatan. Untuk menghitung stabilitas kapal ikan katamaran, maka perlu dilakukan perencanaan skenario muatan (loadcase) ketika beroperasi, sehingga dapat diketahui nilai stabilitas statis pada setiap kondisinya. Loadcaseyang direncanakan yaitu kondisi pada saat kapal berangkat (loadcase 1), kapal berada di fishing ground (loadcase 2), dan pada ketika kapal kembali dari fishing ground (loadcase 3).

Tahap keempat yakni interpretasi hasil dimana nilai stabilitas kapal akan dicocokkan dengan standar teknis yang mengacu pada persyaratan stabilitas kapal*IMOA*. 749 *chapter* 3 dan *HSC* 2000 *annex* 7 *Multihull* [6].Nilai stabilitas kapal kataramaran yang baik secara teknis dan layak beroperasi harus memenuhi kriteria standar tersebut yang ditunjukkan pada Tabel 1 dan 2.

3. Hasil Penelitian

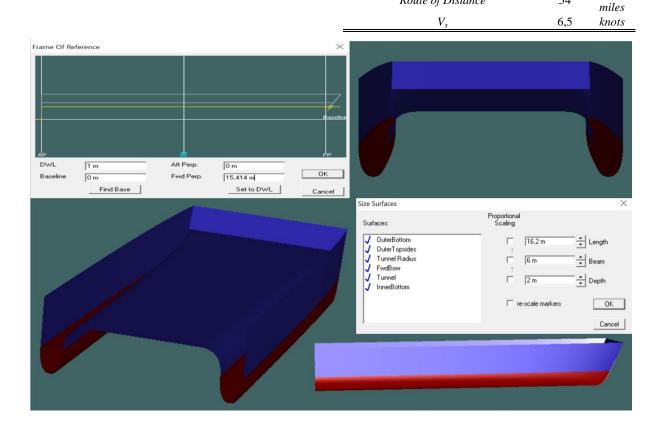
3.1. Pemilihan Kapal Sampel

Proses pemilihan kapal sampel dari nilai *Gross Tonnage* (*GT*) kapal dijadikan sebagai parameter optimasi. Kapal yang dijadikan sampel yakni yang berukuran 40 GT karena dianggap cukup besar untuk menampung hasil tangkap ikan. Ukuran utama kapal penangkap ikan ditunjukkan pada Tabel 3.

3.2. Pemodelan Lambung Katamaran pada Software Maxurf

Setelah mendapatkan ukuran utama kapal sampel, maka dilakukan pemodelan lambung katamaran kapal ikan yang bertujuan untuk mengetahui bentuk lambung dan pola lambung. Pemodelan dilakukan secara 3 (tiga) dimensi (3D) dengan bantuan software maxurf modeler. Bentuk lambung katamaran kapal ikan ditunjukkan pada Gambar 1.

54


Tabel 1. kriteria stabilitas IMO A. 749 bagian 3

Tabel 2. kriteria stabilitas High Speed Craft 2000 annex 7

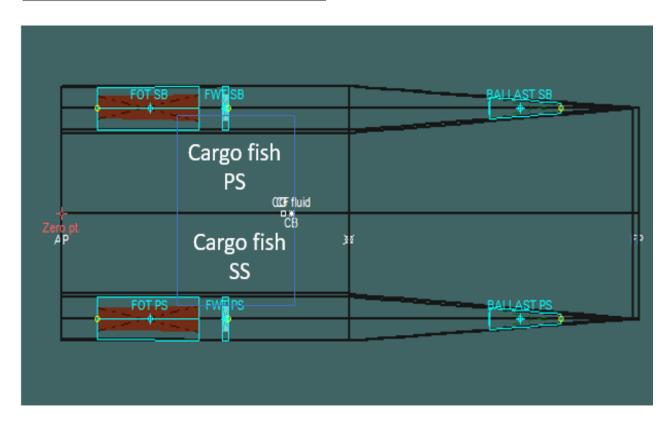
Multihull

				Multinuli				
No.	Kriteria menurut <i>IMO</i> 1978	Keterangan		Kriteria menurut <i>HSC</i> 2000	Ketera	ngan		
1	Sudut 0° ~ 30°	Luasan dibawah kurva stabilitas statis (kurva <i>GZ</i>) harus tidak boleh kurang dari 3,15 m.radian.	1	Sudut $0^{\circ} \sim 30^{\circ}$	Daerah (A1) di bawah sudut θ harus setidakr	nya: A1: 0,055 x 3		
2	Sudut 0° ~ 40°	Luasan dibawah kurva stabilitas statis (kurva <i>GZ</i>) harus tidak boleh kurang dari 5,16 m.radian.			 O/θ (m.rad). dimana θ terkecil dari sudut ber 1. Sudut downfloodin 2. Sudut pada GZ mal 	rikut :		
3	Sudut 30° ~ 40°	Luasan dibawah kurva stabilitas statis (kurva <i>GZ</i>) harus tidak boleh kurang dari 1,719 m.radian.	2	Nilai <i>GZ</i> maksimal	3. Pada sudut 30° Nilai <i>GZ</i> maksimal ak sudut minimal 10°.	kan terjadi pada		
4	Kurva GZ pada sudut $\geq 30^{\circ}$	Kurva GZ harus sedikitnya 0,20 m	Т	abel 3. Ukuran ut	tama kapal sampel			
5	Nilai maksimum	Maksimum kurva GZ tidak boleh		Catamaran hull of Optimization				
6	kurva GZ Tinggi metasentra GM awal	kurang dari 25° Tinggi metasentra <i>GM</i> awal harus tidak boleh kurang dari 0,15 m		$egin{array}{c} L_{OA} \ L_{WL} \ B \ H \end{array}$	16,2 15,665 6 2	meters meters meters meters		
			=	T B_{I} $Route of Distance T$	1 1,25 ance 54	meters meters sea		

Route of Distance

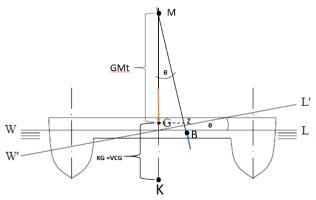
Gambar 1. Pemodelan lambung kapal pada software

3.3. Analisa Stabilitas Kapal Ikan Menggunakan Software Maxurf


Pada analisa stabilitas kapal ikan katamaran dilakukan untuk mengetahui karakteristik kapal padasaat oleng karena pengaruh muatan. Pada tahap menghitung stabilitaskapal ikan katamaran, pertama-tamadilakukanpengaturan dan peletakan tangki-

Tabel 4. Skenario pemuatan kapal ikan

Type fluid of tank	Loadcase 1	Loadcase 2	Loadcase 3
Fuel Oil Starboard	100%	50%	10%
Fuel Oil Portside	100%	50%	10%
Fresh Water starboard	100%	50%	10%
Fresh Water posrtside	100%	50%	10%
Ballast Water starboard	0%	50%	100%
Ballast Water portside	0%	50%	100%
Payload	50%	70%	100%


tangki untuk consumable kapal meliputi tangki bahan bakar, tangki fresh water dan tangki ballast. Letak tangki ballast berada pada lambung bagian depan, sedangkan tangki fresh water dan tangki bahan bakar berada pada lambung bagian belakang Secara detail peletakan tangki consumable kapal ikan dan skenario muatan (loadcase) ditunjukkan pada Tabel 4. dan Gambar 2.

Tabel 4menunjukkan*loadcase* 1 keadaan kapal ikan katamaran yang berangkat dari dermaga, sehingga muatan bahan bakar dan persediaan air bersih penuh 100%. Pada *loadcase* 2 kapal ikan katamaran tiba di *fishing ground* sehingga muatan pada tangki *consumable* mengalami pengurangan sebesar 50%. Pada *loadcase* 3 kapal ikan katamaran kembali menuju dermaga setelah *cargo* (*payload*) terisi penuh atau 100% dengan *consumable* 10%. Analisa stabilitas dilakukan dengan bantuan *software maxurf stability*.

Gambar 2. Peletakan tangki *consumable* tampak atas

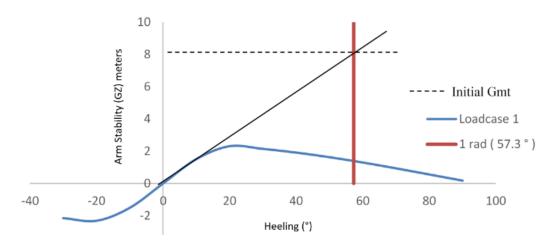
Pada Gambar 3 adalah diagram benda bebas ketika kapal mengalami peristiwa oleng sbb :

Gambar 3. Diagram benda bebas tampak melintang kapal

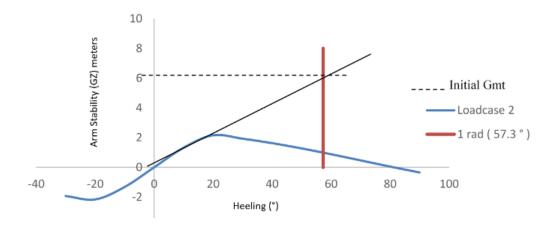
Membuat diagram benda bebas secara melintang kapal merupakan pendekatan yang dilakukan ketika menganalisa stabilitas kapal. Diagram benda bebas tersebut menghasilkan variable-variabel penting yang digunakan dalam menganalisa stabilitas kapal seperti titik metacentric (M), titik berat total kapal secara melintang (G), titik tekan air pada lambung kapal yang tercelup (B), dan garis dasar kapal(K). Menurut IMO salah satu variable standar yang dijadikan tolak ukur dalam menganalisa stabilitas kapal adalah nilai GMt initial. Variabel tersebut tidak boleh lebih kecil atau sama dengan 0,15 meter untuk setiap *loadcase*.

analisa Karena stabilitas menggunakan perangkat lunak *maxurf*, maka ditampilkan data hidrostatik yang diperoleh dari analisa Tabel 5a menunjukkan data hidrostatik yang dihasilkan softaware maxurf dengan skenario loadcase 1 dan Tabel 5b menunjukkan data hidrostatik yang dihasilkan software maxur dengan skenario loadcase2, Tabel 5cmenunjukkan data hidrostatik yang dihasilkan software maxurf dengan skenario

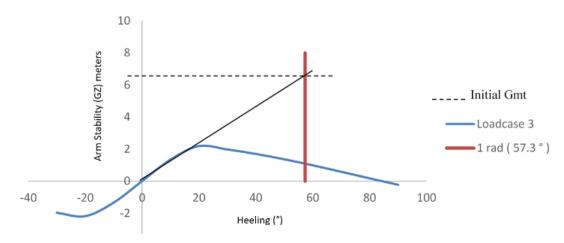
Tabel 5a. Data Hidrostatik loadcase 1


Tabel 5b. Data Hidrostatik loadcase 2

Tabel 5c. Data Hidrostatik loadcase 3


Data Equilibrium		Data Equilibrium Uni		Data Equilibrium	unit	
Draft Amidships m	0,856	Draft Amidships m	0,886	Draft Amidships m	0,933	
Displacement t	17,48	Displacement t	17,65	Displacement t	18,74	
Heel deg	0	Heel deg	0,0	Heel deg	0,0	
Draft at FP m	0,765	Draft at FP m	0,897	Draft at FP m	0,959	
Draft at AP m	0,946	Draft at AP m	0,875	Draft at AP m	0,907	
Draft at LCF m	0,877	Draft at LCF m	0,883	Draft at LCF m	0,927	
Trim (+ve by stern) m	0,181	Trim (+ve by stern) m	-0,022	Trim (+ve by stern) m	-0,052	
WL Length m	15,803	WL Length m	15,854	Beam max extents on WL m	5,995	
Beam max extents on WL m	5,995	Beam max extents on WL m	5,995	Wetted Area m²	69,556	
Wetted Area m²	64,874	Wetted Area m²	66,505	Waterpl. Area m ²	24,562	
Waterpl. Area m²	24,466	Waterpl. Area m²	24,497	Prismatic coeff. (Cp)	0,684	
Prismatic coeff. (Cp)	0,696	Prismatic coeff. (Cp)	0,684	** * **		
Block coeff. (Cb)	0,21	Block coeff. (Cb)	0,204	Block coeff. (Cb)	0,206	
Max Sect. area coeff. (Cm)	0,297	Max Sect. area coeff. (Cm)	0,299	Max Sect. area coeff. (Cm)	0,302	
Waterpl. area coeff. (Cwp)	0,258	Waterpl. area coeff. (Cwp)	0,258	Waterpl. area coeff. (Cwp)	0,258	
LCB from zero pt. (+ve fwd) m	6,153	LCB from zero pt. (+ve fwd) m	6.410	LCB from zero pt. (+ve fwd) m	6,435	
LCF from zero pt. (+ve fwd) m	6,201	LCF from zero pt. (+ve fwd) m	6,219	LCF from zero pt. (+ve fwd) m	6,226	
KB m	0,507	KB m	0,509	KB m	0,532	
KG fluid m	1,07	KG fluid m	1,115	KG fluid m	1,163	
BMt m	8,921	BMt m	8,848	BMt m	8,350	
BML m	20,533	BML m	20,468	BML m	19,373	
GMt corrected m	8,358	GMt corrected m	8,241	GMt corrected m	7,719	
GML m	19,97	GML m	19,862	GML m	18,742	
KMt m	9,427	KMt m	9,356	KMt m	8,882	
KML m	21,039	KML m	20,977	KML m	19.905	
Immersion (TPc) tonne/cm	0.251		0,251	Immersion (TPc) tonne/cm	0,252	
MTc tonne.m	0,216	Immersion (TPc) tonne/cm		MTc tonne m	0,217	
RM at $Ideg = GMt.Disp.sin(1)$ tonne.m	2,55	MTc tonne.m	0,217	RM at $1 \text{deg} = GMt.Disp.sin(1) \text{ tonne.m}$	2,525	
Max deck inclination deg	0,6425	RM at 1 deg = GMt. Disp.sin(1) tonne.m	2,538	Trim angle (+ve by stern) deg	-0,1860	
Trim angle (+ve by stern) deg	0,6425	Trim angle (+ve by stern) deg	-0,0780	27 till drigge (+ ve by sterry deg	-0,1000	

Hasil simulasi stabilitas kapal pada setiap *loadcase* yakni didapatkan masing-masing


kurva lengan untuk skenario muatan yang ditunjukkan pada Gambar 4 berikut.

Gambar 4a. Kurva lengan stabilitas loadcase 1

Gambar 4b. Kurva lengan stabilitas loadcase 2

Gambar 4c. Kurva lengan stabilitas loadcase 3

3.4 Interpretasi Hasil

Loadcase 1 ditunjukkan pada Gambar 3ayakni skenario kapal berangkat dari dermaga menuju fishing ground dengan muatan tangki bahan bakar 100%, tangki fresh water 100%, tangki ballast 0% dan payload 50% (es balok). Dimana ratio es per ikan untuk daerah tropis 1 : 1 (FAO). Maka didapatkan hasil sebagai berikut:

- area *GZ* antara 0°-30° sebesar 49,24 m.deg telah memenuhi persyaratan *IMO*.
- area GZ antara 0°-40° sebesar 68,63 m.deg telah memenuhi persyaratan IMO.
- area *GZ* antara 30°-40° sebesar 19,38 m.deg telah memenuhi persyaratan *IMO*.
- Nilai *GZ* maksimum sebesar 2,27 m pada sudut kemiringan 20 deg.
- Nilai *GM* sebesar 8,359 m tidak boleh kurang atau sama dengan dari 0,15 m.

Loadcase 2 yang ditunjukkan pada Gambar 3b yakni skenario kapal berada di fishing ground dengan muatan tangki bahan bakar 50%, tangki *fresh water* 50%, tangki ballast 50% dan *payload* 70%. Maka didapatkan hasil sebagai berikut:

• area *GZ* antara 0°-30° sebesar 48,75 m.deg telah memenuhi persyaratan *IMO*.

- area *GZ* antara 30°-40° sebesar 19,17 m.deg telah memenuhi persyaratan *IMO*.
- Nilai *GZ* maksimum sebesar 2,261 m pada sudut kemiringan 20 deg.
- Nilai *GM* sebesar 8,225 m tidak boleh kurang atau sama dengan dari 0,15 m.

Loadcase 3 yang ditunjukkan pada Gambar 3c yakni skenario kapal telah kembali dari fishing ground menuju dermaga dengan muatan tangki bahan bakar 10%, tangki fresh water 10%, tangki ballast 100% dan payload 100%. Maka didapatkan hasil sebagai berikut:

- area *GZ* antara 0°-30° sebesar 47,74 m.deg telah memenuhi persyaratan *IMO*.
- area *GZ* antara 0°-40° sebesar 66,84 m.deg telah memenuhi persyaratan *IMO*.
- area *GZ* antara 30°-40° sebesar 19,10 m.deg telah memenuhi persyaratan *IMO*.
- Nilai GZ maksimum sebesar 2,176 m pada sudut kemiringan 20 deg.
- Nilai *GMt* sebesar 7,73 m tidak boleh kurang atau sama dengan dari 0,15 m.

Kesimpulan kondisi aktual hasil simulasi yang dibandingkan dengan standar *IMO* ditunjukkan pada Tabel 6.

Tabel 6. Parameter kurva stabilitas standar IMO vs kurva stabilitas aktual

Kurva lengan stabilitas kapal katamaran											
cı ·	Luas Heeling Actual			Luas Heeling Standar IMO		67	$GZ_{\text{max.}}$	Nilai	Nilai		
Skenario muatan	00-300	00-400	30°-40°	00-300	0°-40°	300-400	GZ _{max.} standa aktual pada		$GM_{ m aktual}$	GM _{min.} Standar	Status
100000-000-00-00-00-00-00-00-00-00-00-00	(meter.radian)						(degre)	heeling	(meter)	(meter)	
Loadcase 1	49,24	68,63	19,38	3,15	5,15	1,71	20°	10°	8,35	0,15	Accept
Loadcase 2	48,75	67,93	19,17	3,15	5,15	1,71	20°	10°	8,225	0,15	Accept
Loadcase 3	47,74	66,84	19,1	3,15	5,15	1,71	20°	10°	7,73	0,15	Accept

Tabel 6 menunjukkan perbedaan luasan dibawah kurva stabilitas statis masing-masing loadcase. Terjadi reduksi luasan dari loadcase 1 menuju loadcase 3. Hal ini disebabkan oleh nilai *GZ* yang mengalami reduksi dari loadcase 1 menuju loadcase 3. Sehingga dapat disimpulkan bahwa nilai luasan di bawah kurva stabilitas statis berbanding lurus dengan

nilai *GZ* unuk setiap kemringan. Selain analisa stabilitas kapal dilakukan juga perhitungan periode oleng kapal (*T*). Nilai *T* digunakan untuk mengetahui waktu yang dibutuhkan pada saat kapal mengalami keadaan oleng hingga kapal kembali ke posisi semula. Perhitungan periode oleng dilakukan untukmasing-masing *loadcase*.

Berdasarkan data yang telah diperoleh berupa data karakteristik hidrostatik kapal ikan katamaran, selanjutnya dilakukan perhitungan periode oleng yang mengacu kepada International *Code on Intact Stability*, 2008- *PartA*. *The roll period* (*T*) pada kapal bisa ditentukan dengan persamaan berikut [7].

$$T = \frac{2xCxB}{\sqrt{GM}}$$
 (s)

Dimana:

 L_{wl} = Panjang kapal pada waterline (m)

B = Lebar kapal keseluruhan (m)

d = Sarat Kapal (m)

GM = Tinggi Metacentra kapal (m)

Hasil dari perhitungan periode oleng kapal dengan 3 variasi *loadcase* dapat dilihat pada Tabel 7 sebagai berikut:

Tabel 7. Periode oleng setiap skenario pemuatan kapal ikan katamaran.

Load	GM	В	d	L_{WL}	T
Condition		(seconds)			
Loadcase 1	8,36	6	0,85	15,85	2,19
Loadcase 2	8,22	6	0,88	15,85	2,18
Loadcase 3	7,73	6	0,99	15,85	2,21

Tabel 7menunjukkan bahwa nilai periode oleng tertinggi adalah 2,21 s terdapat pada *loadcase* 3. Hasil analisa menunjukkan bahwa maka nilai dari *GM* berbanding terbalik dengan nilai periode oleng (*T*) kapal.

4. Kesimpulan

Untuk analisa stabilitas berdasarkan kriteria *International Maritime Organization* (*IMO*) sectionA.749 berupa luas area 0°-30°, 0°-40°, 30°-40°, dan *GM* minimum. Sedangkan nilai *GZ* maksimum harus berada di atas kemiringan 10° sesuai regulasi *High Speed Craft* 2000 annex 7 Multihull dapat disimpulkan bahwa semua skenario *loadcase*

yang direncanakan pada kapal ikan katamaran memenuhi kriteria stabilitas.

5. Saran

Diperlukan adanya penelitian lebih lanjut tentang analisis kestabilan kapal dengan penambahan variable tinggi gelombang, arah datang gelombang, dan tipe-tipe gelombang yang mengarah ke olah gerak kapal ketika beroperasi dengan skenario muatan yang sama.

6. Daftar Pustaka

- [1] Ari, B. S., Eko Sasmito Hadi, Kajian Stabilitas Kapal Ikan type purse seine di Kabupaten Batang. Majalah Kapal Vol III no 1 Hal 10 – 16. 2006.
- [2] Ari Wibawa Budi Santosa, Wilma Amiruddin, dkk. "Studi Perancangan Kapal Pengangkut Ikan dari Kepulauan Seribu ke Jakarta". KAPAL volume 10 no. 3 Oktober 2013.
- [3] Eko Sasmito Hadi, Ari B. S, Studi Design Kapal ikan dengan menggunakan type lambung katamaran. Malajah Kapal Vol IV no 3 hal 156 – 165. 2007.
- [4] Fadillah, A., et.al. Stabilats, Hambatan dan Olah Gerak Kapal Ikan Multi Purpose Net/Line Hauler 20 GT Berdasarkan Kajian Ukuran dan Bentuk Kasko Kapal. Marine Fisheries Vol. 10, No. 2, Hal: 117-128. November 2019. Fisheries Vol. 10, No. 2, Hal: 117-128. November 2019.
- [5] Hadi, E., S., Perancangan Kapal Ikan Katamaran Dengan Penggerak Mesin dan Layar di Kabupaten Rembang Online available:https://media.neliti.com/media/publi cations/146361-ID-perancangan-kapal-ikan-katamaran-dengan.pdf
- [6] International Maritime Organization. Code On Stability For All Types Of Ships. International Maritime Organization. London. 2002.
- [7]International Maritime Organization, International Code on Intact Stability, 2008-Part A. 2008.
- [8] Mulyanto, R. B. et al. Pengenalan dan Pengukuran Bentuk Konstruksi Palka Ikan, BBPPI, Semarang. 2000.
- [9] Paroka D. Karakteristik Geometri dan Pengaruhnya Terhadap Stabilitas Kapal Ferry Ro-Ro Indonesia. KAPAL Jurnal Ilmu Pengetahuan & Teknologi Kelautan. 15 (1): 1-8. 2018.

- [10] Purwanto, Y., Aspek Keselamatan Ditinjau Dari Stabilitas Kapal dan Regulasi Pada Kapal Pole and Line di Bitung, Sulawesi Utara. Marine Fisheries Vol. 5, No. 2, November 2014 Hal: 181-191. 2014.
- [11] Rusmilyansari et. al. Pembangunan Kapal Perikanan di Galangan Kapal Tradisional Kalimantan Selatan. Fish Scientiae, Volume 4 Nomor 8, hal 95-96, Desember 2014.
- [12] Utomo, B. Pengaruh Ukuran Utama Kapal Terhadap Displacement Kapal. TEKNIK – Vol. 31 No. 1 Tahun 2010.