SIMULASI PENGARUH POROSITAS ELEKTRODA TERHADAP KARATERISTIK VANADIUM REDOX FLOW BATTERY (VRFB)

muhammad ghufron, Kurriawan Pranata, Irvan Fajar Hidayah, Mauludi Ariesto Pamungkas

Abstract


Perkembangan energi listrik terbarukan sangat membutuhkan tempat penyimpanan energi dengan performa terbaik. Vanadium Redox Flow Battery (VRFB) adalah baterai dengan performa yang menjanjikan yang menjadikannya sebagai peran kunci dalam pengembangan energi listrik terbarukan. Pemodelan VRFB dibuat menggunakan COMSOL Mutiphysics sesuai dengan prinsip VRFB yaitu menggunakan persamaan Nernst dan elektrodinamika. Model dua dimensi didasarkan pada uraian komprehensif tentang massa, muatan, momentum transportasi, dan konservasi yang dikombinasikan dengan model kinetik secara menyeluruh untuk reaksi spesies vanadium pada sistem baterai. Model yang digunakan divalidasi dengan data hasil eksperimen untuk mempelajari pengaruh variasi laju alir elektrolit sebesar porositas elektroda sebesar 30%, 50%, 70%, dan 90% pada sistem VRFB. Hasil penelitian menunjukkan peningkatan nilai porositas elektroda menurunkan reaksi kimia pada elektroda, menaikan potensial elektrolit, menurunkan molaritas spesies elektrolit saat charging dan discharging. 

References


Suharyati, S. H. Pambudi, J. L. Wibowo, and N. I. Pratiwi, Buku Outlook Energi Indonesia 2019. Jakarta, 2019.

BPPT, Energy Outlook 2020 - Special Edition Dampak Pandemi COVID-19 terhadap Sektor Energi di Indonesia. 2020.

D. J. Suárez, Z. González, C. Blanco, M. Granda, R. Menéndez, and R. Santamaría, “Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery,” ChemSusChem, vol. 7, no. 3, pp. 914–918, 2014, doi: 10.1002/cssc.201301045.

A. Sankar, I. Michos, I. Dutta, J. Dong, and A. P. Angelopoulos, “Enhanced vanadium redox flow battery performance using graphene nanoplatelets to decorate carbon electrodes,” J. Power Sources, vol. 387, no. March, pp. 91–100, 2018, doi: 10.1016/j.jpowsour.2018.03.045.

X. L. Zhou, T. S. Zhao, L. An, Y. K. Zeng, and X. H. Yan, “A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility,” Appl. Energy, vol. 158, pp. 157–166, 2015, doi: 10.1016/j.apenergy.2015.08.028.

Y. Jiang et al., “Superior electrocatalytic performance of porous, graphitic, and oxygen-functionalized carbon nanofiber as bifunctional electrode for vanadium redox flow battery,” Appl. Surf. Sci., vol. 525, no. March, p. 146453, 2020, doi: 10.1016/j.apsusc.2020.146453.

Y. Jiang et al., “Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery,” J. Energy Chem., vol. 59, pp. 706–714, 2021, doi: 10.1016/j.jechem.2020.12.013.

F. Jiang, Z. He, D. Guo, and X. Zhou, “Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries,” J. Power Sources, vol. 440, no. June, p. 227114, 2019, doi: 10.1016/j.jpowsour.2019.227114.

D. Reynard, C. R. Dennison, A. Battistel, and H. H. Girault, “Efficiency improvement of an all-vanadium redox flow battery by harvesting low-grade heat,” J. Power Sources, vol. 390, no. March, pp. 30–37, 2018, doi: 10.1016/j.jpowsour.2018.03.074.

H. Zhang, X. LI, and J. Zhang, Redox Flow Batteries: Fundamental and Aplication, 1st ed., vol. 2, no. 6. New York: Taylor & Francis Group, LLC, 2017.

M. C. Daugherty, S. Gu, D. S. Aaron, B. Chandra Mallick, Y. A. Gandomi, and C. Te Hsieh, “Decorating sulfur and nitrogen co-doped graphene quantum dots on graphite felt as high-performance electrodes for vanadium redox flow batteries,” J. Power Sources, vol. 477, no. July, p. 228709, 2020, doi: 10.1016/j.jpowsour.2020.228709.

K. J. Kim, M. S. Park, Y. J. Kim, J. H. Kim, S. X. Dou, and M. Skyllas-Kazacos, “A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries,” J. Mater. Chem. A, vol. 3, no. 33, pp. 16913–16933, 2015, doi: 10.1039/c5ta02613j.

Z. Cheng et al., “Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods,” Appl. Energy, vol. 279, no. July, p. 115530, 2020, doi: 10.1016/j.apenergy.2020.115530.

A. A. Shah, M. J. Watt-Smith, and F. C. Walsh, “A dynamic performance model for redox-flow batteries involving soluble species,” Electrochim. Acta, vol. 53, no. 27, pp. 8087–8100, 2008, doi: 10.1016/j.electacta.2008.05.067.

E. Ali, H. Kwon, J. Choi, J. Lee, J. Kim, and H. Park, “A numerical study of electrode thickness and porosity effects in all vanadium redox flow batteries,” J. Energy Storage, vol. 28, pp. 1–11, 2020, doi: 10.1016/j.est.2020.101208.

D. You, H. Zhang, and J. Chen, “A simple model for the vanadium redox battery,” vol. 54, pp. 6827–6836, 2009, doi: 10.1016/j.electacta.2009.06.086.




DOI: https://doi.org/10.32487/jst.v10i2.1161

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JST (Jurnal Sains Terapan)

View My Stats