SIMULASI PENGARUH POROSITAS ELEKTRODA TERHADAP KARATERISTIK VANADIUM REDOX FLOW BATTERY (VRFB)
Abstract
Full Text:
PDF (Bahasa Indonesia)References
Suharyati, S. H. Pambudi, J. L. Wibowo, and N. I. Pratiwi, Buku Outlook Energi Indonesia 2019. Jakarta, 2019.
BPPT, Energy Outlook 2020 - Special Edition Dampak Pandemi COVID-19 terhadap Sektor Energi di Indonesia. 2020.
D. J. Suárez, Z. González, C. Blanco, M. Granda, R. Menéndez, and R. Santamaría, “Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery,” ChemSusChem, vol. 7, no. 3, pp. 914–918, 2014, doi: 10.1002/cssc.201301045.
A. Sankar, I. Michos, I. Dutta, J. Dong, and A. P. Angelopoulos, “Enhanced vanadium redox flow battery performance using graphene nanoplatelets to decorate carbon electrodes,” J. Power Sources, vol. 387, no. March, pp. 91–100, 2018, doi: 10.1016/j.jpowsour.2018.03.045.
X. L. Zhou, T. S. Zhao, L. An, Y. K. Zeng, and X. H. Yan, “A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility,” Appl. Energy, vol. 158, pp. 157–166, 2015, doi: 10.1016/j.apenergy.2015.08.028.
Y. Jiang et al., “Superior electrocatalytic performance of porous, graphitic, and oxygen-functionalized carbon nanofiber as bifunctional electrode for vanadium redox flow battery,” Appl. Surf. Sci., vol. 525, no. March, p. 146453, 2020, doi: 10.1016/j.apsusc.2020.146453.
Y. Jiang et al., “Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery,” J. Energy Chem., vol. 59, pp. 706–714, 2021, doi: 10.1016/j.jechem.2020.12.013.
F. Jiang, Z. He, D. Guo, and X. Zhou, “Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries,” J. Power Sources, vol. 440, no. June, p. 227114, 2019, doi: 10.1016/j.jpowsour.2019.227114.
D. Reynard, C. R. Dennison, A. Battistel, and H. H. Girault, “Efficiency improvement of an all-vanadium redox flow battery by harvesting low-grade heat,” J. Power Sources, vol. 390, no. March, pp. 30–37, 2018, doi: 10.1016/j.jpowsour.2018.03.074.
H. Zhang, X. LI, and J. Zhang, Redox Flow Batteries: Fundamental and Aplication, 1st ed., vol. 2, no. 6. New York: Taylor & Francis Group, LLC, 2017.
M. C. Daugherty, S. Gu, D. S. Aaron, B. Chandra Mallick, Y. A. Gandomi, and C. Te Hsieh, “Decorating sulfur and nitrogen co-doped graphene quantum dots on graphite felt as high-performance electrodes for vanadium redox flow batteries,” J. Power Sources, vol. 477, no. July, p. 228709, 2020, doi: 10.1016/j.jpowsour.2020.228709.
K. J. Kim, M. S. Park, Y. J. Kim, J. H. Kim, S. X. Dou, and M. Skyllas-Kazacos, “A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries,” J. Mater. Chem. A, vol. 3, no. 33, pp. 16913–16933, 2015, doi: 10.1039/c5ta02613j.
Z. Cheng et al., “Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods,” Appl. Energy, vol. 279, no. July, p. 115530, 2020, doi: 10.1016/j.apenergy.2020.115530.
A. A. Shah, M. J. Watt-Smith, and F. C. Walsh, “A dynamic performance model for redox-flow batteries involving soluble species,” Electrochim. Acta, vol. 53, no. 27, pp. 8087–8100, 2008, doi: 10.1016/j.electacta.2008.05.067.
E. Ali, H. Kwon, J. Choi, J. Lee, J. Kim, and H. Park, “A numerical study of electrode thickness and porosity effects in all vanadium redox flow batteries,” J. Energy Storage, vol. 28, pp. 1–11, 2020, doi: 10.1016/j.est.2020.101208.
D. You, H. Zhang, and J. Chen, “A simple model for the vanadium redox battery,” vol. 54, pp. 6827–6836, 2009, doi: 10.1016/j.electacta.2009.06.086.
DOI: https://doi.org/10.32487/jst.v10i2.1161
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JST (Jurnal Sains Terapan)
View My Stats