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Abstract 
This research aims to assess the application of microscopic imaging technology in analyzing Bacillus sp. bacteria, 
focusing particularly on the effectiveness of gradient operators in the Canny Edge Detection Algorithm. The study 
encompasses an in-depth evaluation of four principal gradient operators: Sobel, Prewitt, Roberts, and Scharr, to 
enhance edge detection accuracy in microscopic images. Analysis revealed that Sobel and Scharr excel in precision, 
with Sobel standing out in creating texture homogeneity and Scharr demonstrating superior inter-pixel correlation, 
both vital for ensuring visual accuracy of the images. Additionally, these operators show remarkable performance in 
Precision and Recall, effectively identifying relevant edges with minimal errors. Conversely, the Roberts operator, 
with its higher F-measure, offers an ideal equilibrium between precision and recall, making it a suitable choice for 
broader applications. Edge Co-Occurrence Matrix (ECM) analysis indicated that Sobel and Scharr possess higher 
contrast values, thereby emphasizing the sharpness of edge delineation. Conclusively, the study identifies the Scharr 
operator as most fitting for the analysis of microscopic bacterial imagery, owing to its capability in maintaining inter-
pixel correlation and enhanced classification performance. This positions the Scharr operator as a highly applicable 
tool for microscopic bacterial studies, crucial in the accurate and consistent recognition of bacterial patterns. These 
findings significantly advance our understanding of Bacillus sp., directly impacting disease diagnostics and 
biotechnology. The research underscores the critical importance of selecting appropriate gradient operators in 
microscopic analysis and highlights the need for ongoing innovation and exploration in microscopic imaging 
technology. 
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1. Introduction 

This investigation explores the pivotal role 
of microscopic imaging technologies in 
microbiology, particularly focusing on Bacillus 
sp. bacteria. These bacteria are crucial in 
biomedical and biotechnological areas due to 
their unique survival capabilities in harsh 
environments and their spore-forming ability. 
Microscopic imaging is essential for examining 
the surface structures of these bacterial cells 
and understanding their individual cellular 
variations, thus offering broad application 
possibilities and enhancing the scientific 
knowledge base [1], [2]. 

Recent advancements in microscopic 
imaging have enabled in-depth studies of 
bacterial interactions, including those involving 
Escherichia coli and Pseudomonas aeruginosa, 
with different surfaces. Such studies provide a 
more nuanced understanding of microorganism 
behaviors and their environmental responses. 
The introduction of expansion microscopy and 
cell wall mechanical analysis has significantly 
improved our identification abilities for 
different bacterial species and their 
physiological states [3]. These methods have 
also contributed to a better understanding of 
bacterial metabolism at the microscopic scale 
and have led to the development of more 
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efficient and precise microscopic image 
analysis techniques [4]. 

Given recent technological advances in 
microscopic imaging, this study highlights the 
importance of enhancing edge detection 
methods, particularly focusing on the Canny 
Edge Detection algorithm. Known for its 
precise edge identification with minimal noise, 
this algorithm has undergone improvements, 
including the use of type-2 fuzzy sets and 
replacing Gaussian filters with adaptive median 
filters. These enhancements significantly 
improve noise suppression and image detail 
sharpening capabilities. Furthermore, 
employing the inter-class maximum variance 
(OSTU) algorithm has been shown to enhance 
edge detection quality, providing more accurate 
and efficient image analysis possibilities [5], 
[6], [7]. 

This research evaluates the application and 
relative effectiveness of the enhanced Canny 
Edge Detection Algorithm combined with 
various gradient operators such as Sobel, 
Prewitt, Roberts, and Scharr in analyzing 
Bacillus sp. bacterial microscopic images. Its 
primary objective is to deepen our 
understanding of these bacteria through 
advanced image processing methods, offering 
fresh insights into their behaviors and 
interactions. The effectiveness of these 
modifications is gauged using analytical 
methods such as Precision and Recall, F-
Measure, Edge Co-Occurrence Matrix (ECM), 
Peak Signal-to-Noise Ratio (PSNR), and 
Matthews Correlation Coefficient (MCC), 
providing a comprehensive evaluation of the 
gradient operators' success in microscopic 
image interpretation [8], [9]. 

The limited literature on developing 
innovative and precise microscopic image 
analysis methods underscores the significance 
of this research. Previous studies, such as those 
by Yu [10], explored edge detection algorithms 
based on the Sum and Difference of 
Neighborhoods along Axis (SDNNA), 
demonstrating strong anti-noise capabilities 
and high positioning accuracy across various 
image resolutions. These findings highlight key 

challenges in microscopic image analysis, 
including noise interference and the inability to 
adapt to complex bacterial patterns. 

Additionally, research by Zhou [11] on the 
PatternNet dataset demonstrated the 
effectiveness of large-scale datasets in 
improving pattern recognition accuracy for 
high-resolution images. However, their reliance 
on extensive training datasets limits their 
applicability in scenarios with data constraints.  

Recent developments in edge detection 
technology show promising potential. For 
example, Sun [12] implemented edge detection 
algorithms on SEM (Scanning Electron 
Microscope) images of multilayer thin films, 
achieving significant improvements in edge 
sharpness and precision for morphological 
analysis. Despite this progress, scalability and 
generalizability remain significant challenges, 
as discussed by Yu [10] emphasizing the need 
for more adaptive and comprehensive 
analytical methods. 

Referring to these previous findings, this 
study aims to compare the efficacy of the Canny 
edge detection algorithm, using gradient 
operators like Sobel, Prewitt, Roberts, and 
Scharr, in analyzing Bacillus sp. bacteria 
microscopic images. Employing analytical 
techniques such as Precision, Recall, F-
Measure, ECM, PSNR, and MCC, the study 
seeks to identify the most efficient and accurate 
image interpretation methods. The results are 
expected to provide deeper insights into 
bacterial morphology and lead to breakthroughs 
in biotechnological and medical applications. 
Furthermore, this research opens avenues for 
AI application in image analysis, which plays a 
pivotal role in developing advanced medical 
diagnostic systems, thereby advancing both 
scientific and practical knowledge in 
microbiology and biotechnology. 

 
2. Method 

This research endeavors to merge digital 
image processing with microbial biology to 
extend beyond mere technical edge detection in 
the analysis of bacterial colony patterns, as 
depicted in Figure 1.  
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Figure 1. System Workflow for Edge Detection and 
Analysis Methods. 

The objective is to fuse image processing 
technology with an understanding of microbial 
biology, thereby forging an analytical 
framework that unites these fields to provide 
new insights into colony pattern interpretation. 
This initiative reflects a collaborative spirit 
between the techniques of image processing 
and microbial biology, demonstrating synergy 
between the technical and biological aspects. 

This research evaluates gradient operators 
for edge detection in Bacillus sp. colony 
imaging, employing metrics like Precision, 
Recall, F-measure, ECM, PSNR, and MCC to 
transcend traditional visual assessments and 
explore image-based microbiological features. 
Analyzing 50 digital microscopy samples, it 
aims to correlate visual and biological colony 
traits. Preprocessing involves grayscaling and 
Gaussian filtering to preserve image clarity and 
biological detail. Extensive analysis, including 
Ground Truth evaluation with Otsu 
Thresholding and five analytical methods, 
offers a detailed evaluation of operator efficacy, 
guiding optimal edge detection approaches in 
microbial biology studies. 

This research integrates cutting-edge 
techniques such as Ant Colony Optimization 
[13], bee colony algorithms [14], and 
evolutionary systems [15] into microbiological 
analysis.  This integration not only improves 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
edge detection accuracy but also enhances the 
interpretation of biological data, contributing to 
a deeper understanding of microorganism 
behavior and expanding the scope of 
microbiological and digital image processing 
applications [16], [17]. 
 
2.1. Image Sample Processing 

Image sample processing is crucial for 
analyzing bacterial colony patterns, employing 
a digital microscope with a CMOS sensor, 12-
megapixel resolution, 30 fps frame rate, and 
10x magnification to study Bacillus sp. On 
90x15mm petri dishes. The study, conducted at 
Institut Teknologi Kalimantan Microbiology 
Laboratory in 2023, examines 50 samples, 
excluding bacteria preparatory and growth 
stages. Image pre-processing importance for 
bacteria detection, such as E. Coli in MATLAB, 
is noted by Karatepe [18]. The ePetri system by 
Jung and Lee [19] uses SPSM and super-
resolution for better colony analysis, while Bae 
[20] consider imaging plates and Raman 
spectroscopy for in-depth analysis, enhancing 
morphological understanding and edge 
detection in bacterial microscopy. 
 
2.2. Pre-Processing Steps 
 In bacterial colony imaging, preprocessing 
is crucial, involving conversion to grayscale 
and noise reduction. Grayscale is obtained via: 
𝐼!"#$%&#'( = 0.299 × 𝑅 + 0.587 × 𝐺     	
																								+0.114 × 𝐵             (1) 
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where R, G, and B represent the intensity in red, 
green, and blue channels. Gaussian filtering is 
employed for noise reduction, described by: 
 
𝐺(𝑥, 𝑦) = )

*+,!
𝑒𝑥𝑝 9− -!.$!

*,!
;                        (2) 

 
Preprocessing's importance, as highlighted by 
Jung and Lee [19], lies in enhancing the 
identification of bacterial diffraction patterns, 
deemed essential for accurate edge detection 
and analysis, as further supported by 
Buzalewicz [24]. 
 
2.3. Sobel Gradient Operator 
 The Sobel Operator is vital for detecting 
edges in bacterial colony imagery by computing 
intensity gradients. It yields accurate gradient 
measurements for segmentation, crucial in 
FPGA-based edge detection [21] and in 
improving detection emphasizing precision 
[22]. The horizontal Gx and vertical Gy 
gradients are computed using the Sobel kernel: 
 
𝐺- = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝑆-(𝑚, 𝑛))

/01)
)
201)   (3) 

 
𝐺$ = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝑆$(𝑚, 𝑛))

/01)
)
201)   (4) 

 
Where the Sobel kernels Sx and Sy are used for 
detecting horizontal and vertical changes 
respectively: 
 

𝑆- = C
−1 0 1
−2 0 2
−1 0 1

D                (5) 

 

𝑆$ = C
−1 −2 −1
0 0 0
1 2 1

D                (6) 

 
These kernels are instrumental in identifying 
changes in intensity in both the horizontal and 
vertical directions within the colony images. 
 
 
 
 
 
 

2.4. Prewitt Gradient Operator 
The Prewitt gradient operator plays a 

significant role in edge detection for analyzing 
bacterial colony images by revealing 
substantial intensity transitions. Recent 
enhancements to this operator have 
demonstrated improved effectiveness in edge 
detection and gradient analysis [23]. The 
horizontal Gx and vertical Gy gradients using 
the Prewitt operator are calculated as follows: 
 
𝐺- = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝑃-(𝑚, 𝑛))

/01)
)
201)    (7) 

 
𝐺$ = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝑃$(𝑚, 𝑛))

/01)
)
201)   (8) 

 
With Px and Py as the Prewitt kernels for 
detecting horizontal and vertical changes: 
 

𝑃- = C
−1 0 1
−1 0 1
−1 0 1

D                (9) 

 

𝑃$ = C
−1 −1 −1
0 0 0
1 1 1

D              (10) 

 
These help in identifying significant intensity 
changes, which are crucial for bacterial species 
such as Bacillus sp. 
 
2.5. Roberts Gradient Operator 
 The Roberts Gradient Operator is utilized 
for precise edge detection in images, enhancing 
both continuity and noise resistance, especially 
when paired with Otsu thresholding [26]. The 
gradients are calculated using: 
 
𝐺- = 𝐼(𝑖, 𝑗) ∙ 𝑅- + 𝐼(𝑖 + 1, 𝑗 + 1) ∙ (−𝑅-)        (11) 
 
𝐺$ = 𝐼(𝑖, 𝑗 + 1) ∙ 𝑅$ + 𝐼(𝑖 + 1, 𝑗) ∙ F−𝑅$G       (12) 
 
Where Rx and Ry are the Roberts kernels: 
 
𝑅- = H1 0

0 −1I               (13) 
 
𝑅$ = H 0 1

−1 0I               (14) 
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This operator is instrumental in identifying 
edges within images of bacterial colonies such 
as those of the Bacillus species. 
 
2.6. Scharr Gradient Operator 
 The Scharr gradient operator enhances 
edge detection in images, improving the 
accuracy and resilience to noise. Adapting the 
Scharr operator with median filters or 
morphological techniques fine-tunes the edge 
segmentation in bacterial colony images [26], 
[27]. The Scharr operator uses convolution: 
 
𝐺- = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝑆-(𝑚, 𝑛)*

/03
*
203      (15) 

 
𝐺$ = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝑆$(𝑚, 𝑛)*

/03
*
203     (16) 

 
With Sx and Sy as the Scharr kernels for 
horizontal and vertical change detection, 
respectively: 
 

𝑆- = C
−3 0 3
−10 0 10
−3 0 3

D              (17) 

 

𝑆$ = C
−3 −10 −3
0 0 0
3 10 3

D              (18) 

 
This is crucial for more precise edge analysis in 
images depicting bacterial colony patterns. 
 
2.7. Gradient Magnitude and Direction 

Calculating the magnitude and direction of 
the gradient is a fundamental step in image 
analysis for edge detection, such as in bacterial 
colonies. The magnitude is determined by: 

𝐺 = K𝐺-* + 𝐺$*               (19) 

and the direction of the gradient is given by: 
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 94"

4#
;              (20) 

This aids in accurately depicting edges within 
microbiological imagery [28], [29]. 
 
 
 
 
 
 

2.8. Non-Maximum Suppression 
 Non-Maximum Suppression (NMS) 
improves edge detection in images by selecting 
the strongest gradient values and eliminating 
the non-significant ones, thereby sharpening 
the edges. The formula for NMS is: 
 
𝐺567(𝑥, 𝑦) = Q𝐺(𝑥, 𝑦)

0
  

 
if	𝐺(𝑥, 𝑦) ≥ 𝐺567

/(8!9:;"%(𝑥, 𝑦)
elsewhere

             (21) 

 
This is crucial for more precise edge analysis in 
bacterial colony images, reducing errors and 
increasing confidence in detection [30]. 
 
2.9. Hysteresis Thresholding 
 Hysteresis Thresholding is an edge 
detection method in image processing that 
preserves significant edges while reducing 
noise. Wei [31] describes its application in 
detecting small targets in infrared imaging, 
which is relevant for bacterial image analysis. 
This method employs two thresholds, 𝑇!"#! and 
𝑇$%&, to classify pixels as edges. The process is 
defined by the following rules:       
    
1. If	𝐺(𝑥, 𝑦) ≥ 𝑇98!9then	𝐸𝑑𝑔𝑒(𝑥, 𝑦) = 1.  
2. If	𝐺(𝑥, 𝑦) < 𝑇';<then	𝐸𝑑𝑔𝑒(𝑥, 𝑦) = 0.  
3. If	𝐺(𝑥, 𝑦) ≥ 𝑇';< and is connected to  
a strong edge pixel, then 𝐸𝑑𝑔𝑒(𝑥, 𝑦) = 1.          (22) 
 
Setting the thresholds 𝑇!"#! and 𝑇$%& 
appropriately allows Hysteresis Thresholding 
to effectively differentiate bacterial colony 
edges while maintaining noise suppression. To 
ensure reproducibility of the results, this study 
provides detailed parameter configurations: 
 
Ø Hysteresis Thresholds 𝑇!"#! and 𝑇$%&: 

o The 𝑻𝒉𝒊𝒈𝒉 threshold was set to 70% of 
the maximum gradient magnitude, 
capturing only the strongest edges. 

o The 𝑻𝒍𝒐𝒘 threshold was set to 30% of 
the maximum gradient magnitude, 
ensuring weaker edges connected to 
strong edges were included in the 
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analysis. These threshold values were 
determined based on preliminary 
optimization to achieve a balance 
between edge detection accuracy and 
noise reduction. 
 

Ø Kernel Filters for Gradient Operators: 
o Sobel Operator: A 3x3 kernel was used 

for gradient computation in the x and y 
directions, providing a balance between 
edge clarity and computation efficiency. 

o Prewitt Operator: A 3x3 kernel, 
slightly less sensitive to noise compared 
to Sobel, was employed to improve edge 
localization. 

o Roberts Operator: A 2x2 kernel was 
utilized to capture fine edge details, 
particularly in high-gradient regions. 

o Scharr Operator: A 3x3 kernel 
optimized for rotational symmetry was 
selected to enhance edge detection 
accuracy in noisy environments. 

 
By defining these parameter settings and kernel 
configurations, this study ensures the 
reproducibility of results while contributing to 
a more robust application of Hysteresis 
Thresholding in the analysis of bacterial 
microscopic images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. (a) Image of bacterial colonies captured 
using a regular camera (b) Image of bacterial colonies 
obtained from a microscope with 10x magnification 
(c) Ground Truth Data Image. 

 
2.10. Ground Truth Image 

The Ground Truth Image is employed to 
enhance the accuracy of detection and 
segmentation in microscopic image analysis 
[32]. Otsu Thresholding separates objects from 
the background using the formula: 

 
𝜎*(𝑡) = 𝑤3(𝑡) ∙ 𝑤)(𝑡) ∙ F𝜇3(𝑡) − 𝜇)(𝑡)G

*        (23) 
 
Which maximizes the variance between the two 
classes determined by the threshold value t. 
 
2.11. Data Analysis Methods 
 In bacterial microscopic image analysis, 
metrics such as Precision, Recall, F-Measure, 
ECM, PSNR, and MCC are crucial for gauging 
the accuracy of edge classification. Precision 
focuses on the proportion of relevant findings, 
while Recall concentrates on the proportion of 
actual findings correctly identified, calculated 
as follows: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = =">(	@;%8A8B(
=">(	@;%8A8B(.C#'%(	@;%8A8B(

            (24) 

𝑅𝑒𝑐𝑎𝑙𝑙 = =">(	@;%8A8B(
=">(	@;%8A8B(.C#'%(	5(!#A8B(

             (25) 
 
The F-Measure harmonizes these two by 
combining their values for binary classification 
performance: 
 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = *×@"(&8%8;/×E(&#''
@"(&8%8;/.E(&#''

                   (26) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ECM measures the similarity among edge 
pixels based on their intensity and relative 
position, PSNR evaluates image quality against 
quantization errors, and MCC assesses the 
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quality of predictions in imbalanced datasets 
using the formula: 
 

𝑀𝐶𝐶 = (=@×=5)1(C@×C5)
H(=@.C@)(=@.C5)(=5.C@)(=5.C5)

          (27) 
 
This research underscores the importance of 
these metrics in enhancing the automatic 
counting of bacterial colonies and 
morphological analysis, supported by pertinent 
literature [33], [34], [35], [36], [37]. These 
methods enable a more precise and effective 
interpretation of image data. 
 
3. Results and Discussion 
3.1. Original Bacterial Colony Image Data 

versus Magnified Microscopic Data 
 Figure 2. presents a comparative analysis 
between original bacterial colony photographs 
and the data acquired from magnified 
microscopic observation. Figure 2(a). depicts a 
standard camera photograph of a bacterial 
colony, providing a rough visual context with 
minimal detail focused on individual colonies 
against a petri dish background. Figure 2(b). 
illustrates the bacterial colony captured with a 
10x magnification microscope, allowing for a 
more detailed observation that could reveal 
additional morphological details and possibly 
some cellular structures.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Magnitude of Gradient Operator (Sobel, 
Prewitt, Roberts, Scharr). 

 
The enhanced color and texture clarity offer 
more information for subsequent analysis. 
Figure 2(c). represents the 'ground truth' data 
extracted from the microscopic image, where 

bacterial colonies have been highlighted or 
labeled for analysis. 
 This ground truth serves as the standard for 
validating the results from automated detection 
methods, showing a stark contrast and sharp 
distinction between the colonies and the 
background, crucial for detection algorithms 
and automated counting. 
 

Related to recent literature: 
•  Karatepe [38] showed that advanced image 

processing is effective for detecting and 
enumerating E. coli in petri dishes, 
indicating its applicability for automated 
analysis of bacterial colonies in Figure 2 (a) 
and (b). 

• Balmages [39] demonstrated that laser speckle 
imaging could visualize bacterial colonies in 
Figure 2 (a) and (b) more quickly than 
conventional methods, enhancing early 
detection of microbial growth. 

• Minoni [40] explored Optical Forward 
Scattering for bacterial identification, 
showcasing its potential in converting Figure 
2 (b) to a processed ground truth Figure 2 (c) 
and emphasizing its application in 
classifying bacterial colonies. 

 
The progression from Figure 2 (a) to (c) 
exemplifies a refinement process that yields 
images amenable to quantitative analysis.  
 
 
 
 
 
 
 
 
 
 
 
Contemporary studies endorse sophisticated 
imaging techniques for more precise and 
efficient bacterial colony enumeration, with 
implications for diagnostics, food safety, and 
microbiology research. 
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3.2. Visualization Image Data: Gradient 
Operator Magnitude 
In Figure 3, we are presented with the 

visual results of edge detection using Sobel, 
Prewitt, Roberts, and Scharr gradient operators. 
These images display the magnitude of edge 
gradients as elicited by each respective 
operator. From a visual standpoint, several 
observations can be made: 
•  The Sobel and Scharr operators appear to 

produce more defined edges with a higher 
level of detail. 

•  The Prewitt operator generates results akin to 
Sobel but may lack some sharpness. 

•   The Roberts operator exhibits smoother and 
less contrasting edges compared to the 
others. 

 

Considering recent academic contributions: 
• Li [41] explored CNN-based edge detection, 

showing enhanced precision in SAR images, 
suggesting deep learning could surpass 
traditional gradient operators in accuracy 
and detail (SAR target image edge detection 
based on CNN). 

• Deka [42] found that Sobel-based edge 
detectors outperform Prewitt and Laplacian 
in certain scenarios, correlating with 
observed enhanced edge detail in Sobel and  

 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Visualization of Gradient Operator (Sobel, 

Prewitt, Roberts, Scharr). 
 
     Scharr (Comparative Analysis of FOD 

based Prewitt, Sobel & Laplacian Operators 
for Edge Detection on Freshwater Fish 
Images). 

• Chakravathi [43] investigated FPGA 
architecture for real-time edge detection, 
demonstrating its effectiveness with Sobel 
and Scharr operators in producing consistent 
edges under noisy conditions. 

The conclusions drawn based on the 
visualizations and related literature suggest that 
Sobel and Scharr operators may be favored for 
applications that require sharp and detailed 
edge detection, such as in texture analysis or 
high-resolution image processing. On the other 
hand, Prewitt and Roberts might be more suited 
for applications that benefit from a gentler 
approach, potentially being less sensitive to 
noise. 
 
3.3. Visualization of Gradient Direction 

Data 
 Figure 4. provides a visual representation 
of the direction of gradient data as processed by 
the Sobel, Prewitt, Roberts, and Scharr 
operators. These visualizations typically 
illustrate the orientation of edges within the 
image by directly mapping various colors to 
represent different gradient directions. 
 
From these images, we can deduce that: 
• The Sobel and Scharr operators display a 

broader range of colors,  
 
 
 
 
 
 
 
 
 
 
  

suggesting they may be more capable of  
 

capturing subtle changes in gradient 
direction within the image. 

• The Prewitt and Roberts operators seem to 
exhibit less color variation, which may 
indicate less precise detection of gradient 
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direction when compared to Sobel and 
Scharr. 

In the context of contemporary literature: 
• Li [41] discussed the improvement in 

precision and detail using CNN-based edge 
detection, aligning with findings that Scharr 
and Sobel excel in gradient direction 
variation (SAR target image edge detection 
based on CNN). 

• Chakravathi [43] emphasize the importance 
of speed and accuracy in real-time edge 
detection, also crucial for determining the 
correct gradient direction in noisy image 
conditions (FPGA based architecture for 
real-time edge detection). 

Consequently, the capabilities of Sobel and 
Scharr in showcasing gradient direction 
variation might make them more favored for 
applications that require accurate gradient 
mapping, such as in robot navigation, where 
precise edge orientation is crucial. Prewitt and 
Roberts might be more suitable for applications 
that do not demand high-detail gradient 
direction and may be less sensitive to noise. The 
choice of operator must be tailored to the 
specific needs of the application and 
considerations of the image characteristics 
under analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Result of NMS, Binary Threshold, and 
Hysteresis Threshold Processes. 
 
3.4. The NMS, Binary Threshold, and 

Hysteresis Threshold Process 
 Figure 5. illustrates the results from the 
Non-Maximum Suppression (NMS), Binary 
Threshold, and Hysteresis Threshold processes 
applied to the four different edge detection 

operators: Sobel, Prewitt, Roberts, and Scharr. 
These processes enhance edge detection results 
by amplifying significant edge responses and 
improving the overall quality of edge detection. 

From the images presented, we observe the 
following: 
• Sobel and Scharr operators seem to produce 

cleaner, more defined edges, with Sobel 
displaying particularly high edge sharpness, 
which might indicate their effectiveness in 
implementing NMS and hysteresis 
thresholding techniques. 

• Prewitt and Roberts, while similar in 
function to Sobel, exhibit slightly less 
sharpness, which could suggest a less precise 
gradient direction detection compared to 
Sobel and Scharr. 

Linking to recent academic research: 
• Dong [44] researched NMS-based adaptive 

edge detection, observing enhanced speed 
and accuracy in real-time applications, 
similar to the sharpness achieved by Sobel 
and Scharr (An Improved NMS-Based 
Adaptive Edge Detection Method and Its 
FPGA Implementation). 

 
 
 
 
 
 
 
 
 
 
 
 
• Zhang [45] created an automatic edge 
detector using k-means clustering for bio-
images, efficiently detecting edges without 
manual threshold settings, underscoring the 
value of automation in improving edge 
detection (Auto-thresholding Edge Detector for 
bio-image processing). 

Therefore, the NMS, Binary Threshold, 
and Hysteresis Threshold processes are crucial 
for improving edge detection quality. Based on 
the visualizations provided, Sobel and Scharr 
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seem more effective in utilizing these 
techniques to achieve clean and sharp edge 
detection. The incorporation of newer and 
adaptive algorithms, as discussed in the 
literature, can lead to further enhancements in 
edge detection applications. 
 
3.5. Result from the Analysis Using 

Precision, Recall, and F-Measure 
Methods 

 Figure 6. displays the bar graphs 
representing the average performance of 
precision and recall, as well as the F-measure, 
for edge detection operators Sobel, Prewitt, 
Roberts, and Scharr. Here’s a summary of the 
results: 
• Sobel and Scharr have the highest precision 

(41.31%), indicating a strong ability to 
correctly identify true edges. 

• Prewitt has the highest recall (29.54%), 
suggesting it is the most capable of 
identifying all actual edges. 

• Roberts scores the highest in F-measure 
(23.45%), which might reflect a balanced 
trade-off between precision and recall. 

Precision measures the proportion of true 
positive detections out of all positive detections 
made, while recall measures the proportion of 
actual positive detections made by the 
algorithm. F-measure is the harmonic mean of 
precision and recall, providing a single metric 
to evaluate overall performance. 
In relation to recent scholarly discussions: 
• Reddy [46] demonstrate that metrics like 

precision, recall, and F-measure, used in 
diabetic retinopathy image analysis, are also 
effective for assessing edge detection in 
clinical and biomedical contexts. 

• Ma [47] found that the Fuzzy Box-counting 
Dimension Method (FBDM) enhances edge 
detection precision without preprocessing, 
excelling in denoising, potentially 
improving the precision of algorithms like 
Sobel and Scharr. 

• Gautam & Biswas [48] showed that the 
Whale Optimization Algorithm (WOA) 
excels in noisy conditions, improving PSNR, 
Precision, Recall, and F-measure, indicating 

that such algorithmic enhancements can 
increase precision in edge detection. 

• Yu [49] found that noise-resistant edge 
detection techniques, which maintain high 
resolution and minimize noise, yield high F-
measure scores, signifying enhanced 
precision over recall in complex imaging 
scenarios. 

 

 
Figure 6. Average Precision and Recall (left image), 
Average F-Measure by Edge Detection Operator (right 
image). 
 

From this analysis, it emerges that Sobel 
and Scharr may be more suitable for 
applications where precision is paramount, 
such as in medical image processing or 
bacterial pattern detection requiring highly 
accurate edges. Prewitt might be more 
appropriate for applications emphasizing recall, 
such as environmental monitoring where 
capturing every edge is vital. Roberts, with the 
highest F-measure, could offer the best 
compromise between precision and recall, 
making it a good choice for general applications 
requiring a balance of both metrics. The 
literature suggests that advanced techniques 
and optimization methods could significantly 
enhance all these metrics. 
 
3.6. Results from Data Analysis using The 

ECM Method 
3.6.1. The ECM Method in The Contrast 

and Dissimilarity Sections 
 Figure 7 and 8. presents the outcomes of 
the ECM for the contrast and dissimilarity of 
edges detected by Sobel, Prewitt, Roberts, and 
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Scharr operators. The bar charts illustrate two 
key textural features: contrast and dissimilarity. 
• Contrast in ECM quantifies the intensity 

differences between adjacent pixels. Higher 
contrast values, particularly noted with the 
Sobel operator, suggest significant 
differences that could indicate sharper edge 
detection. 

• Dissimilarity in ECM reflects the variation 
in texture by measuring how different 
adjacent pixels are. Higher dissimilarity 
values denote greater textural variation 
within the image. 

Recent studies highlight the importance of 
local contrast and color dissimilarity in 
effectively detecting objects within images, 
suggesting that algorithms like Sobel and 
Scharr,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. ECM Results in The Contrast Section.  
 
which exhibit higher ECM contrast, might be 
preferred in applications where sharp edge 
delineation is crucial. On the other hand, 
applications that benefit from capturing texture 
variation might find value in the dissimilarity 
data provided by these methods. 
 

• Robust edge detection methods, such as 
those resistant to noise, have been shown to 
maintain high resolution while minimizing 
noise interference, which could be indicated 
by a favorable balance of contrast and 
dissimilarity in ECM [50]. 

 

For bacterial colony microscopy, the edge 
quality enhanced by Sobel or Scharr operators 
can significantly aid in the identification and 
counting of colonies with greater accuracy. In 
practice, it may also be useful to combine such 
edge detection with further image-processing 
techniques, as suggested by recent research, to 
achieve optimal results. Advanced processing 
techniques, including deep learning algorithms 
and optimization methods, can significantly 
improve detection performance in microscopic 
image analysis. 
 
3.6.2. The ECM Method in The 

Homogeneity, Energy, Correlation 
Sections 

 Within the realm of image processing, the 
ECM method, as shown in Figure 9,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Dissimilarity Section of ECM. 
 
is pivotal for analyzing Homogeneity, Energy, 
and Correlation. Recent studies provide 
valuable insights using this method, especially 
for comparing the performance of various edge 
detection operators such as Sobel, Prewitt, 
Roberts, and Scharr. This is particularly 
relevant in the context of microscopic images of 
bacterial patterns. 

The ECM method offers a novel approach 
to assess and compare the effectiveness of these 
edge detection operators in terms of their ability 
to accurately represent and analyze the textural 
and structural properties of microscopic 
bacterial images. By examining the 
Homogeneity, Energy, and Correlation metrics, 
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the ECM provides a comprehensive framework 
for understanding the nuances of edge detection 
in complex image patterns. 
 

 
 

Figure 9. Results of Measurements for Homogeneity, 
Energy, Correlation in The ECM Method. 
 
According to recent literature, the ECM has 
been effectively applied in diverse image 
processing applications, including: 
 
• Enhanced Edge Detection Performance: Ren 

[50] developed a Gabor filter-based corner 
detection algorithm, surpassing the Harris 
algorithm in accuracy and noise immunity, 
beneficial for microscopic image edge 
refinement. Additionally, Chen [51] 
enhanced image interpolation accuracy 
using a nonlocal low-rank matrix completion 
method combined with edge detection and 
neural networks, demonstrating the potential 
of advanced techniques to improve edge 
detection in detailed bacterial imagery. 

• Microscopic Image Processing: Zhang [52] 
demonstrated ECM's effectiveness in 
enhancing infrared target detection by 
improving edge and angle identification, 
which aids in distinguishing targets against 
varied backgrounds. This underscores 
ECM's value in applications requiring 
precise edge detection, such as microscopic 
imagery. 

 

Graphic analysis as shown in Figure 8, that 
the Sobel operator exhibits higher 
Homogeneity, indicating superior texture 
uniformity, while the Scharr operator 
demonstrates higher Correlation, implying 

stronger inter-pixel relationships in the image. 
This suggests that for microscopic bacterial 
pattern images, where maintaining 
homogeneous texture and strong correlation is 
crucial, the Scharr operator may be more 
suitable. 

Edge detection operators like Sobel and 
Scharr, characterized by high Homogeneity and 
Correlation values, are invaluable in extracting 
consistent texture features and maintaining the 
visual integrity of bacterial colonies in 
microscopy applications. This assists in more 
accurate bacterial identification and 
classification. These findings align with recent 
research suggesting that ECM and related 
texture metrics offer superior classification 
performance in applications such as corner 
detection, image enhancement, and shape 
classification. 
 
3.7. Results of Data Analysis using The 

PSNR Method and The MCC Method 
The performance evaluation of each edge 

detection operator at this stage is conducted 
using the PSNR method for its correlation to 
noise, and the MCC method for assessing the 
classification effectiveness of each operator, as 
illustrated in Figure 10 and 11. Recent research 
and data analysis using PSNR and MCC 
metrics for Sobel, Prewitt, Roberts, and Scharr 
edge detection operators lead us to several 
significant insights: 
• Süzme & Guraksin [53] demonstrated that 

applying the Particle Swarm Optimization 
(PSO) algorithm to set thresholds in 
gradient-based edge detection improves 
image quality and lowers computational 
demands, enhancing PSNR and the efficacy 
of edge detection operators. 

• Singh, Sharma, & Jain [54] developed a 
hybrid noise removal technique that 
enhances edge detection, evidenced by 
improved PSNR and SSIM metrics, 
indicating its efficacy in accurately 
identifying edges in microscopic bacterial 
images. 

• Sankararao, Reddy, & Srinivas [55] showed 
the PSS filter’s effectiveness in enhancing 
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edge detection and noise resistance in image 
processing, crucial for revealing fine details 
and improving boundary definition in 
microscopic analysis. 

For microscopic imaging of bacterial 
patterns, this indicates a preference for the 
Sobel operator in applications requiring high 
PSNR levels, suggesting a better match with 
reference images. However, the Scharr 
operator, with its higher MCC value, shows 
superior classification performance, which is 
crucial for consistency in recognizing bacterial 
patterns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. The PSNR Analysis Method shows 
Performance Measurement Results of The Evaluated 
Gradient Operators. 
 

The chosen operator must strike a balance 
between the need for edge clarity and the 
capacity to maintain image quality, while 
minimizing classification errors. In the case of 
bacterial pattern microscopy, where edge 
detection accuracy is vital for counting and 
classifying colonies, an operator that provides a 
balance between high PSNR and robust MCC 
values is likely to deliver the most effective 
results. 
 
3.8. Research Limitations and Prospects for 

Future Inquiry   
In the scientific journey, acknowledging 

the limitations of our knowledge is as crucial as 
celebrating the progress we have made. This 
research, while providing valuable insights into 
the dynamics of edge detection in microscopic 
imaging, also unveils the methodological and 

applicative boundaries we face. These 
limitations reflect not just the complexity of the 
phenomena under investigation but also mark 
the starting points for deeper scientific 
exploration. Herein, we delineate key 
limitations identified during this study, which 
will guide future research directions and spur 
innovation in the field of microscopic image 
processing. 

 

 

 

 

 

 

 

 

 
 
Figure 11. Performance Measurement Results of The 
Evaluated Gradient Operators using The PSNR MCC 
Method. 
 
Research Limitations: 
1. Data Specificity: The analysis was centered 

on a dataset of microscopic bacterial pattern 
images, which may not fully represent edge 
detection operator performance on other 
image types or under different imaging 
conditions. 

2. Application Specificity: Edge detection 
operators were often evaluated in ideal 
conditions or highly specific application 
contexts, which may not fully reflect their 
performance in broader real-world scenarios 
or across various image types. 

3. Image Variability: The images used for 
evaluation may lack sufficient noise 
variation, contrast, or detail to fully test the 
capabilities of the operators. 

4. Limited Performance Metrics: Metrics 
such as PSNR and MCC provide insights 
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into certain aspects of image quality and 
edge detection accuracy but do not always 
capture overall performance in practical 
applications. 

5. Parameter Dependence: Edge detection 
operator performance is heavily dependent 
on parameter selection, and this optimization 
is often manually conducted, limiting the 
ability to extrapolate findings to automated 
applications. 

6. Computational Complexity: The analysis 
did not account for the computational 
complexity or processing time required by 
each operator, which are critical factors in 
real-time applications. 

 
Prospects for Future Research: 

In light of these findings and limitations, 
recommended follow-up actions include: 
1. Trials on Diverse Datasets: Further 

research should test edge detection operators 
on a variety of image types, including non-
medical ones, to validate findings and extend 
their applicability. 

2. Algorithm Development and 
Optimization: Developing hybrid 
algorithms that combine the strengths of 
different edge detection operators may yield 
improvements in precise and efficient edge 
detection. 

3. Automated Parameter Selection: Future 
research could focus on developing methods 
for automatic parameter optimization that 
could enhance the generalizability of 
operators. 

4. Real-time Performance Analysis: Studies 
evaluating the real-time performance of edge 
detection operators would be invaluable, 
especially for applications where processing 
time is critical. 

5. Integration with Machine Learning 
Systems: Incorporating findings with 
machine learning systems to improve 
classification and predictions based on 
enhanced edge features could provide 
significant advancements in image 
processing. 

 

By considering these limitations and building 
upon the findings, the research community can 
continue to develop more sophisticated and 
reliable techniques for edge detection, which 
are essential for applications such as the 
analysis of microscopic bacterial pattern 
images, where accuracy and reliability are 
paramount. 
 
4. Conclusion and Recommendations 
4.1. Conclusion 
 This study focuses on utilizing various 
gradient operators within the Canny Edge 
Detection Algorithm for enhanced microscopic 
imaging of Bacillus sp. bacteria. It critically 
assesses the effectiveness of Sobel, Prewitt, 
Roberts, and Scharr operators, highlighting 
their distinct capabilities in capturing bacterial 
cell edges and textures. Among these, the 
Scharr operator stands out for its superior inter-
pixel correlation and classification 
performance, making it highly suitable for 
detailed bacterial morphology analysis. 
The research underscores the Scharr operator's 
unique ability to accurately identify and classify 
subtle morphological features in bacteria, 
surpassing conventional imaging methods. This 
precision is vital for understanding bacterial 
environmental interactions and intrinsic 
characteristics, with significant implications for 
disease diagnostics and biotechnological 
applications. 

Conclusively, the study advocates for 
continuous innovation in microscopic imaging 
techniques, particularly emphasizing the 
refinement and expanded use of gradient 
operators for in-depth bacterial analysis. This 
advancement not only enriches our 
understanding of microbiological imaging but 
also paves the way for practical applications in 
related fields.  
 
4.2. Recommendations 
 For an enhanced understanding of edge 
detection in microscopic imagery, it is 
recommended to explore a range of gradient 
operators to reveal intricate details within 
bacterial structures. Emphasis is placed on the 
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continual improvement of resolution and clarity 
in microscopic images to enable more 
comprehensive analysis and the potential for 
new discoveries. The practical application of 
these findings is advocated in the diagnosis of 
bacterial diseases and biotechnological 
research. Interdisciplinary collaboration, 
encompassing fields such as microbiology, 
imaging, and cross-disciplinary studies, is 
considered crucial for enriching understanding 
and facilitating the widespread application of 
these findings. Additionally, a focus is placed 
on the need for developing training programs to 
enhance the understanding and implementation 
of microscopic imaging techniques, with the 
objective for this technology to contribute 
significantly in research and medical practice 
contexts. 
 
References 
[1] Smith, K.P., et al. (2020). “Image analysis and 

artificial intelligence in infectious disease 
diagnostics”. Clinical Microbiology and 
Infection, 26, 1318. 

[2] Johnson, M., & Davis, R. (2021). “Advanced 
microscopy in the study of bacterial cell 
biology”. Microbiology Spectrum, 9, 1-15. 

[3] Wang, Y., et al. (2019). “Single-cell bacterial 
imaging with expansion microscopy”. Nature 
Methods, 16, 987-990. 

[4] Lee, J., et al. (2022). “AI-enhanced 
microscopic analysis of bacterial cells”. 
Journal of Bacteriology, 204, e00392-21. 

[5] Chen, X., & Wang, L. (2020). “Improved 
Canny Edge Detection algorithm for bacterial 
cell image analysis”. Computational Biology 
and Chemistry, 88, 107356. 

[6] Liu, H., et al. (2021). “Edge detection in 
bacterial imaging using fuzzy logic and 
Gaussian filters”. Journal of Microbiological 
Methods, 182, 106105. 

[7] Zhang, Y., & Zhou, X. (2022). “OSTU 
algorithm for edge detection in bacterial 
microscopy”. Microscopy Research and 
Technique, 85, 1562-1569. 

[8] Singh, A., et al. (2019). “Gradient operators in 
edge detection for bacterial cell images”. 
Journal of Imaging, 5, 54. 

[9] Patel, K., & Kumar, A. (2021). “Comparative 
analysis of edge detection techniques in 

bacterial imaging”. Biomedical Signal 
Processing and Control, 64, 102242. 

[10] Yu, H., Sun, Z., & Liu, Y. (2020). Accurate 
Detection of Image Edge Based on Sum and 
Difference of Neighborhoods along Axis 
(SDNNA). International Journal of Modern 
Applied Mechanics, 7(4), 119-123. 

[11] Zhou, W., Newsam, S., Li, C., & Shao, Z. 
(2017). PatternNet: A Benchmark Dataset for 
Performance Evaluation of Remote Sensing 
Image Retrieval. ISPRS Journal of 
Photogrammetry and Remote Sensing, 145, 
197-209. 

[12] Sun, X., Wang, Y., & Zhao, H. (2024). Edge 
Detection Algorithm for SEM Images of 
Multilayer Thin Films. Coatings, 14(3), 313. 

[13] Patel, V., & Patel, N. (2016). “Ant Colony 
Optimization for image edge detection”. 
Signal, Image and Video Processing, 10(4), 
745-752. 

[14] Bansal, J.C., & Rawat, S. (2017). “Artificial 
bee colony algorithm for image processing 
tasks: A survey”. Artificial Intelligence 
Review, 48(4), 529-551. 

[15] Mousavi, S.M., et al. (2019). “An evolutionary 
computational approach for edge detection in 
gray scale images”. Pattern Recognition 
Letters, 128, 255-261. 

[16] Choudhry, H. (2016). “A comprehensive 
review of computational methods for 
automatic feature extraction from digital 
images”. IET Image Processing, 10(5), 349-
369. 

[17] Maeda, Y., et al. (2017). “Colony fingerprint 
for discrimination of microbial species based 
on lensless imaging of microcolonies”. PLoS 
ONE, 12, e0174723. 

[18] Karatepe, F., Taş, B., Coşkun, O., & Kahriman, 
M. (2022). “Detection of Escherichia Coli 
Bacteria by Using Image Processing 
Techniques”. International Journal of Biology 
and Biomedical Engineering. 

[19] Jung, J., & Lee, J. (2016). “Real-time bacterial 
microcolony counting using on-chip 
microscopy”. Scientific Reports, 6. 

[20] Bae, E., et al. (2016). “Advanced techniques 
for bacterial imaging”. Journal of 
Microbiology, 54(3), 219-228. 

[21] Jadhav, A. (2021). “FPGA-based edge 
detection for bacterial colony images”. Journal 
of Digital Imaging, 34(2), 350-358. 



 

 
 

92 

            JURNAL TEKNOLOGI TERPADU VOL.13 NO.1                                                 APRIL 2025                                                ISSN 2338 - 6649                              

[22] Hao, X., et al. (2021). “Improved Sobel edge 
detection for high-precision bacterial 
imaging”. Applied Microbiology and 
Biotechnology, 105(12), 4979-4990. 

[23] Li, Y., et al. (2021). “Enhanced Prewitt 
operator for bacterial colony edge detection”. 
Microscopy Research and Technique, 84(5), 
983-992. 

[24] Buzalewicz, I., et al. (2016). “Image pre-
processing for improving bacterial detection 
and analysis using digital holography”. 
Applied Optics, 55(27), 7663-7671. 

[25] Tao, X., Liu, Y., & Zhang, Z. (2014). 
“Application of Roberts Gradient Operator in 
Edge Detection”. Journal of Image Processing, 
21(4), 559-564. 

[26] Zhang, H., Wang, S., & Liu, Q. (2019). 
“Enhanced Edge Detection Using Scharr 
Operator and Adaptive Filtering”. Pattern 
Recognition Letters, 40(2), 112-119. 

[27] Liu, F., Chen, X., & Zhao, L. (2020). 
“Improved Scharr Operator for Bacterial 
Colony Image Analysis”. Microscopy 
Research, 28(3), 487-495. 

[28] Gvozdev, M., Ivanov, V., & Petrov, A. (2016). 
“Gradient Magnitude and Direction in 
Microbiological Image Analysis”. Journal of 
Computational Biology, 23(9), 771-778. 

[29] Ashabrawy, G.A. (2015). “Edge Detection in 
Microbial Images: Techniques and 
Challenges”. Microbial Informatics, 12(1), 24-
30. 

[30] Tian, Y., & Zhang, Y. (2021). “Non-Maximum 
Suppression for Improved Edge Analysis in 
Colony Images”. Image and Vision 
Computing, 39(7), 58-64. 

[31] Wei, L., Jiang, T., & Zhang, X. (2019). 
“Hysteresis Thresholding in Infrared Target 
Detection”. Infrared Physics & Technology, 
97, 423-429. 

[32] Croxatto, A., Prod'hom, G., & Greub, G. 
(2017). “Applications of MALDI-TOF Mass 
Spectrometry in Clinical Microbiology”. 
Future Microbiology, 12(6), 781-794. 

[33] Rodrigues, P., Luís, A., & Tavaria, F. (2022). 
“A Study on Edge Co-Occurrence Matrix for 
Bacterial Colony Analysis”. Journal of 
Microbiological Methods, 179, 105986. 

[34] Wonohadidjojo, D. M. (2022). “Peak Signal-
to-Noise Ratio in Microscopic Image 
Analysis”. Journal of Medical Imaging, 9(2), 

254-260. 
[35] Britton, J., Thompson, M., & Smith, S. (2022). 

“Matthews Correlation Coefficient in 
Microbial Image Analysis”. Bioinformatics, 
38(11), 3021-3027. 

[36] Chicco, D., & Jurman, G. (2020). “The 
advantages of the Matthews correlation 
coefficient (MCC) over F1 score and accuracy 
in binary classification evaluation”. BMC 
Genomics, 21, 6. 

[37] Tharwat, A. (2020). “Classification assessment 
methods”. Applied Computing and 
Informatics, 17(1), 168-192. 

[38] Karatepe, A., Özgür, E., & Yılmaz, C. (2022). 
“Detection of Escherichia Coli Bacteria by 
Using Image Processing Techniques”. Journal 
of Bacterial Research, 34(2), 203-210. 

[39] Balmages, J., Patterson, I., & Li, S. (2021). 
“Laser speckle imaging for early detection of 
microbial colony forming units”. Journal of 
Microbial Imaging, 19(4), 467-474. 

[40] Minoni, U., Farina, L., & Rossi, M. (2015). 
“On the application of optical forward-
scattering to bacterial identification”. 
Biotechnology Reports, 9, 95-101. 

[41] Li, H., Wang, J., & Zhang, S. (2022). “SAR 
target image edge detection based on CNN”. 
Computational Intelligence and Neuroscience, 
2022, Article 5647389. 

[42] Deka, B., & Laskar, R. H. (2020). 
“Comparative Analysis of FOD based Prewitt, 
Sobel & Laplacian Operators for Edge 
Detection on Freshwater Fish images”. 
International Journal of Image Processing, 
14(3), 88-97. 

[43] Chakravathi, R., Kumar, A., & Sinha, D. 
(2015). “FPGA based architecture for real-time 
edge detection”. Journal of Real-Time Image 
Processing, 10(3), 473-483. 

[44] Dong, Y., Li, S., & Zhou, X. (2016). “An 
Improved NMS-Based Adaptive Edge 
Detection Method and Its FPGA 
Implementation”. Journal of Image and 
Graphics, 21(2), 245-253. 

[45] Zhang, H., & Makowski, P. (2015). “Auto-
thresholding Edge Detector for bio-image 
processing”. Bioimage Informatics, 12(1), 56-
63. 

[46] Reddy, B.K., Patel, H., & Kumar, V. (2017). 
“Precision, Recall and F-measure in Diabetic 
Retinopathy Analysis”. Journal of Medical 



 

 
 

93 

            JURNAL TEKNOLOGI TERPADU VOL.13 NO.1                                                 APRIL 2025                                                ISSN 2338 - 6649                              

Imaging, 14(4), 412-419. 
[47] Ma, Y., Li, Z., & Jiang, W. (2014). “Fuzzy 

Box-counting Dimension Method for Edge 
Detection Enhancement”. Fuzzy Systems 
Journal, 22(3), 301-308. 

[48] Gautam, N., & Biswas, M. (2018). “Whale 
Optimization Algorithm for Edge Detection”. 
Signal Processing Letters, 25(7), 1024-1028. 

[49] Yu, T., Zhao, L., & Wang, X. (2022). “Robust 
Edge Detection Against Noise in Image 
Processing”. Journal of Computer Vision, 
40(1), 34-45. 

[50] Ren, J., Li, H., & Zhang, Y. (2019). “Corner 
Detection Using Gabor Filter with Improved 
Accuracy”. Image Processing Theory, 18(2), 
158-164. 

[51] Chen, X., Liu, H., & Zhang, Z. (2014). 
“Nonlocal Low-rank Matrix Completion for 
Edge Detection”. Journal of Computational 
Vision, 36(5), 410-421. 

[52] Zhang, Y., Liu, P., & Tan, J. (2021). “Infrared 

Target Enhancement Using Edge Co-
Occurrence Matrix”. Infrared Imaging, 29(3), 
207-215. 

[53] Süzme, R., & Guraksin, G. (2019). “Particle 
Swarm Optimization in Gradient-based Edge 
Detection Algorithms”. Journal of Image 
Processing, 23(1), 47-55. 

[54] Singh, A., Sharma, S., & Jain, R. (2018). 
“Hybrid Techniques for Noise Reduction and 
Edge Detection in Microscopic Bacterial 
Pattern Images”. Journal of Microscopy, 
261(2), 213-221. 

[55] Sankararao, M., Reddy, K. R., & Srinivas, G. 
(2014). “PSS Filter for Enhanced Edge 
Detection and Noise Resistance in Image 
Processing”. Journal of Digital Imaging, 27(3), 
344-351. 

 
 
  

 


