PREDIKSI GANGGUAN PANIK MENGGUNAKAN KNOWLEDGE DISCOVERY IN DATABASE DENGAN ALGORITMA GRADIENT BOOSTING

Muammar Ramadhani Maulizidan, Muhammad Lucky Hermanto, Muhammad Lucky Hermanto, Onky Ardhillah, Onky Ardhillah, Muhammad Azyumardi Azra, Muhammad Azyumardi Azra, Kevin Agustin Purba, Kevin Agustin Purba, Umar Rahman Zidan, Umar Rahman Zidan, Ken Ditha Tania, Ken Ditha Tania, Allsella Meiriza, Allsella Meiriza

Abstract


In an effort to enhance the diagnosis and intervention of panic disorder, this study develops a predictive model for determining the severity level of panic disorder using the Knowledge Discovery in Databases (KDD) approach. The dataset comprises variables such as age, gender, personal and family history, current stressors, symptom severity, impact on daily life, demographics, medical history, psychiatric history, substance use, coping mechanisms, social support, and lifestyle factors. The Gradient Boosting algorithm was employed to analyze the data and uncover complex patterns among the variables. The results indicate that the proposed model is capable of classifying the severity of panic disorder with high accuracy, aligning with findings from previous studies that utilized similar approaches. Other research also supports the effectiveness of machine learning algorithms in predicting panic attacks using data from wearable devices and mobile applications. These findings are expected to contribute to the development of decision support systems in the field of mental health. 

Keywords


Knowledge Discovery in Database; Gradient Boosting Algorithm; Accuracy

Full Text:

PDF

References


K. Vitoasmara, F. V. Hidayah, N. I. Purnamasari, R. Y. Aprillia, dan L. D. Dewi A., “Gangguan Mental (Mental Disorders),” Student Research Journal, vol. 2, no. 3, pp. 57–68, Jun. 2024,

A. A. G. A. D. A. P. Putra et al., “Generalized Anxiety Disorder (GAD): A Literature Review,” Jurnal Biologi Tropis, vol. 24, no. 1b, pp. 697–703, 2024

T. Anjarsari, I. R. I. Astutik, dan U. Indahyanti, “Deteksi Dini Gangguan Kecemasan Menggunakan Metode Naïve Bayes,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 7, no. 4, pp. 1198–1210, Des. 2022

D. W. Sari dan M. M. Wahyudi, “Analisis dan Perbandingan Algoritma Prediksi dalam Mengetahui Perkiraan Peningkatan Jumlah Kasus COVID-19 di Indonesia dengan Metodologi CRISP-DM,” Jurnal ResearchGate, Jan. 2021.

D. C. P. Buani, “Deteksi Dini Penyakit Diabetes dengan Menggunakan Algoritma Random Forest,” Evolusi: Jurnal Sains dan Manajemen, vol. 12, no. 1, pp. 1–8, Mar. 2024.

J. A. Samuels, “One-Hot Encoding and Two-Hot Encoding: An Introduction,” Preprint, Jan. 2024.

N. V. Chawla, K. W. Bowyer, L. O. Hall, dan W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, Jun 2002.

P. Florek dan A. Zgdański, “Benchmarking State-of-the-Art Gradient Boosting Algorithms for Classification,” arXiv preprint, arXiv:2305.17094, May 2023.

W. I. Rahayu, C. Prianto, dan E. A. Novia, “Perbandingan Algoritma K-Means dan Naïve Bayes untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT. Pertamina (Persero),” Jurnal Teknik Informatika, vol. 13, no. 2, pp. 1–8, Apr. 2021.

P. L. Romadloni, B. A. Kusuma, dan W. M. Baihaqi, “Komparasi Metode Pembelajaran Mesin untuk Implementasi Pengambilan Keputusan dalam Menentukan Promosi Jabatan Karyawan,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, pp. 622–628, Sep. 2022.




DOI: https://doi.org/10.32487/jtt.v13i2.2518

Refbacks

  • There are currently no refbacks.


JTT (Jurnal Teknologi Terpadu) has been indexed by:

 

 

 

 

 

 

 

 

 

Web
Analytics

JTT Visitor Stats