Kinerja Mekanik dan Ketahanan Korosi Mortar Menggunakan Pasir Pantai dan Nano Waste Tea Powder
Abstract
Produksi beton menjadi salah satu kontributor utama terhadap emisi karbon dan eksploitasi sumber daya alam, khususnya akibat tingginya penggunaan semen dan agregat alami. Penelitian ini bertujuan mengevaluasi potensi nano waste tea powder (NWTP), yang berasal dari limbah teh rumah makan, sebagai bahan pengganti sebagian semen dalam mortar. NWTP diproses melalui pencucian, pengeringan, pengovenan dan dua kali penggilingan menggunakan disc mill untuk mencapai ukuran partikel halus. Campuran mortar disusun dengan penggantian semen sebesar 5% dan 7,5%, menggunakan pasir sungai dan pasir pantai sebagai agregat halus, serta air tawar sebagai media pencampuran. Sebanyak 120 benda uji disiapkan untuk dilakukan pengujian meliputi kuat tekan, porositas, daya serap air, sorptivitas, dan half-cell potential (HCP) hingga umur perawatan 91 hari. Hasil menunjukkan bahwa mortar dengan 5% NWTP mampu mempertahankan kekuatan tekan yang baik dan menurunkan porositas secara bertahap seiring bertambahnya umur. Nilai HCP pada campuran ini juga menunjukkan kondisi baja tulangan yang stabil tanpa indikasi korosi aktif. Sebaliknya, penggunaan 7,5% NWTP menyebabkan peningkatan porositas dan laju penyerapan air yang lebih tinggi, serta nilai HCP yang lebih negatif dari ambang batas korosi, mengindikasikan potensi korosi aktif pada tulangan. Kombinasi NWTP dengan pasir sungai memberikan performa lebih baik dibanding pasir pantai. Secara keseluruhan, NWTP pada kadar 5% dinilai optimal sebagai alternatif bahan tambah ramah lingkungan untuk meningkatkan keberlanjutan dalam produksi mortar berbasis limbah lokal.
Keywords
Full Text:
PDFReferences
K. Humphreys and M. Mahasenan, Toward a Sustainable Cement Industry: Climate Change. Substudy 8. World Business Council for Sustainable Development, 2002. [Online]. Available: https://books.google.co.id/books?id=FvX9tgAACAAJ
M. A. Riffat Sb, “Building Energy Consumption and Carbon dioxide Emissions: Threat to Climate Change,” J. Earth Sci. Clim. Change, vol. s3, 2015, doi: 10.4172/2157-7617.S3-001.
L. Huang, G. Krigsvoll, F. Johansen, Y. Liu, and X. Zhang, “Carbon emission of global construction sector,” Renew. Sustain. Energy Rev., vol. 81, pp. 1906–1916, Jan. 2018, doi: 10.1016/j.rser.2017.06.001.
K. Ahmed Ali, M. I. Ahmad, and Y. Yusup, “Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector,” Sustainability, vol. 12, no. 18, p. 7427, Sep. 2020, doi: 10.3390/su12187427.
R. Kumanayake, H. Luo, and N. Paulusz, “Assessment of material related embodied carbon of an office building in Sri Lanka,” Energy Build., vol. 166, pp. 250–257, May 2018, doi: 10.1016/j.enbuild.2018.01.065.
M. Robati, D. Daly, and G. Kokogiannakis, “A method of uncertainty analysis for whole-life embodied carbon emissions (CO2-e) of building materials of a net-zero energy building in Australia,” J. Clean. Prod., vol. 225, pp. 541–553, Jul. 2019, doi: 10.1016/j.jclepro.2019.03.339.
D. Patah, A. Dasar, and A. Nurdin, “Sustainable concrete using seawater, sea-sand, and ultrafine palm oil fuel ash: Mechanical properties and durability,” Case Stud. Constr. Mater., vol. 22, p. e04129, Jul. 2025, doi: 10.1016/j.cscm.2024.e04129.
P. Chastas, T. Theodosiou, K. J. Kontoleon, and D. Bikas, “Normalising and assessing carbon emissions in the building sector: A review on the embodied CO 2 emissions of residential buildings,” Build. Environ., vol. 130, pp. 212–226, Feb. 2018, doi: 10.1016/j.buildenv.2017.12.032.
A. Siddika, Md. A. A. Mamun, R. Alyousef, and H. Mohammadhosseini, “State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 5, pp. 294–307, Jul. 2021, doi: 10.1016/j.jksues.2020.10.006.
M. Jahanzaib Khalil, M. Aslam, and S. Ahmad, “Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete – A review,” Constr. Build. Mater., vol. 270, p. 121371, Feb. 2021, doi: 10.1016/j.conbuildmat.2020.121371.
H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” J. Build. Eng., vol. 40, p. 102286, Aug. 2021, doi: 10.1016/j.jobe.2021.102286.
D. Patah, A. Dasar, I. Ridhayani, H. Suryani, A. I. Saudi, and S. Sainuddin, “Kekuatan dan Durabilitas Oil Palm Shell (OPS) sebagai Alternatif Pengganti Agregat Kasar pada Beton Bertulang,” JTT J. Teknol. Terpadu, vol. 12, no. 1, pp. 80–87, Apr. 2024, doi: 10.32487/jtt.v12i1.2103.
D. Patah, A. Dasar, and N. Md. Noor, “The Effects of Palm Oil Fuel Ash on Mechanical and Durability Properties of Sustainable Foamed Concrete,” J. Civ. Eng. Forum, pp. 75–84, Jan. 2025, doi: 10.22146/jcef.13749.
D. Patah, A. Dasar, F. Fakhruddin, B. Shintarahayu, and A. Apriansyah, “The Impact of Fly Ash and Sea Sand on Strength and Durability of Concrete,” Key Eng. Mater., vol. 1000, pp. 23–33, Dec. 2024, doi: 10.4028/p-o0WA24.
A. Dasar, D. Patah, and N. Okviyani, “Impact of incorporating nano-palm oil fuel ash on the mechanical properties and durability of paving blocks prepared with seawater and sea sand for sustainable construction,” Constr. Build. Mater., vol. 481, p. 141539, Jun. 2025, doi: 10.1016/j.conbuildmat.2025.141539.
A. Dasar, D. Patah, M. A. Caronge, F. Mahmuddin, and A. Apriansyah, “Strength and Durability of Paving Block with Seawater and POFA (Palm Oil Fuel Ash),” Key Eng. Mater., vol. 1000, pp. 11–22, Dec. 2024, doi: 10.4028/p-K6EQUo.
W. Tangchirapat, C. Jaturapitakkul, and P. Chindaprasirt, “Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete,” Constr. Build. Mater., vol. 23, no. 7, pp. 2641–2646, Jul. 2009, doi: 10.1016/j.conbuildmat.2009.01.008.
A. M. Zeyad, M. A. Megat Johari, B. A. Tayeh, and M. O. Yusuf, “Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete,” Constr. Build. Mater., vol. 125, pp. 1066–1079, Oct. 2016, doi: 10.1016/j.conbuildmat.2016.08.065.
B. Lothenbach, D. Nied, E. L’Hôpital, G. Achiedo, and A. Dauzères, “Magnesium and calcium silicate hydrates,” Cem. Concr. Res., vol. 77, pp. 60–68, Nov. 2015, doi: 10.1016/j.cemconres.2015.06.007.
H. M. Hamada, A. A. Al-attar, F. M. Yahaya, K. Muthusamy, B. A. Tayeh, and A. M. Humada, “Effect of high-volume ultrafine palm oil fuel ash on the engineering and transport properties of concrete,” Case Stud. Constr. Mater., vol. 12, p. e00318, Jun. 2020, doi: 10.1016/j.cscm.2019.e00318.
P. Sikora, K. Cendrowski, M. Abd Elrahman, S.-Y. Chung, E. Mijowska, and D. Stephan, “The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica,” Appl. Nanosci., vol. 10, no. 8, pp. 2627–2638, Aug. 2020, doi: 10.1007/s13204-019-00993-8.
S. Jin, J. Zhou, X. Zhao, and L. Sun, “Quantitative relationship between pore size distribution and compressive strength of cementitious materials,” Constr. Build. Mater., vol. 273, p. 121727, Mar. 2021, doi: 10.1016/j.conbuildmat.2020.121727.
M. M. Ul Islam, K. H. Mo, U. J. Alengaram, and M. Z. Jumaat, “Durability properties of sustainable concrete containing high volume palm oil waste materials,” J. Clean. Prod., vol. 137, pp. 167–177, Nov. 2016, doi: 10.1016/j.jclepro.2016.07.061.
N. H. A. S. Lim, M. A. Ismail, H. S. Lee, M. W. Hussin, A. R. Mohd. Sam, and M. Samadi, “The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar,” Constr. Build. Mater., vol. 93, pp. 29–34, Sep. 2015, doi: 10.1016/j.conbuildmat.2015.05.107.
DOI: https://doi.org/10.32487/jtt.v13i2.2681
Refbacks
- There are currently no refbacks.
JTT (Jurnal Teknologi Terpadu) has been indexed by:
|
|
|
|
|
|
|
|
|


