Metode Kontrol Skalar Dengan Penala Parameter PID Otomatis Menggunakan Algoritma PSO Sebagai Pengendali Kecepatan Motor Induksi Tiga Fasa Berbasis LabView
Abstract
This paper presents the PID parameter tuning automatically for three-phase induction motors with the V/F control method or scalar control. PID control is one type of simple control, its computation is light, easy to implement and known to be tough in dealing with disturbances. But PID has a weakness that is the difficulty of determining the optimal PID parameters, especially when applied to nonlinear systems such as speed control on a scalar control-based induction motor. Output tuning results automatically in the form of the best PID parameter data collection. This study was validated through simulations using the LabView application by testing dynamic speeds and dynamic loads. When testing using the automatic tuning algorithm PID parameters with parameters that have been optimized the Particle Swarm Optimization (PSO) algorithm, the dynamic speed performance characteristic results are better seen from the transient time in the form of average dead time and rise time of less than 1ms. The results of the Global Best Fitness from the PID automatic tuning simulation using the LabView-based PSO algorithm in the form of Kp, Ki, and Kd values can be used as input for setting the speed of the induction motor in real time.
Keywords : autotuning, speed control, induction motor, Particle Swarm Optimization , LabVIEW®
ABSTRAK
Pada tulisan ini menyajikan penala parameter PID secara otomatis untuk motor induksi tiga fase dengan metode kendali V/F atau kendali skalar. Kendali PID merupakan salah satu tipe kendali sederhana, komputasinya ringan, mudah diimplementasi dan dikenal tangguh menghadapi gangguan. Tetapi PID memiliki kelemahan yaitu sulitnya menentukan parameter PID yang optimal, apalagi bila diterapkan pada sistem non-linear seperti pengendalian kecepatan pada motor induksi berbasis kendali skalar. Luaran hasil penalaan secara otomatis berupa kumpulan data parameter PID terbaik. Penelitian ini divalidasi melalui simulasi menggunakan aplikasi LabView dengan pengujian kecepatan dinamik dan beban dinamik. Ketika pengujian menggunakan parameter PID algoritma penala otomatis dengan parameter yang telah dioptimalkan algoritma Particle Swarm Optimization (PSO), didapatkan hasil karakteristik performa kecepatan dinamik yang lebih baik dilihat dari waktu transien berupa rata-rata dead time dan rise time kurang dari 1ms. Hasil Global Best Fitness dari simulasi penalaan otomatis PID menggunakan algoritma PSO berbasis LabView yang berupa nilai Kp, Ki, dan Kd dapat dijadikan input untuk pengaturan kecepatan motor induksi secara real time.
Kata kunci : penala otomatis, pengatur kecepatan, motor induksi, Particle Swarm Optimization, LabVIEW®
Full Text:
PDF (Bahasa Indonesia)References
B. Praharsena, E. Purwanto, A. Jaya, M. R. Rusli, H. Toar, and R. Wk, “Stator Flux Estimator Using Feed-Forward Neural Network for Evaluating Hysteresis Loss Curve in Three Phase Induction Motor,” Emit. Int. J. Eng. Technol., vol. 6, no. 1, pp. 168–184, 2018.
D. Dorrell, L. Parsa, and I. Boldea, “Automotive electric motors, generators, and actuator drive systems with reduced or no permanent magnets and innovative design concepts,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5693–5695, 2014.
M. A. Martinez-Hernandez, J. M. Gutierrez-Villalobos, S. M. Malagon-Soldara, F. Mendoza-Mondragon, and J. Rodriguez-Resendiz, “A speed performance comparative of field oriented control and scalar control for induction motors,” 2016 IEEE Conf. Mechatronics, Adapt. Intell. Syst. MAIS 2016, 2016.
A. Mu, “A New Induction Motor V / f Control Method Capable of High-Performance Regulation at Low Speeds,” vol. 34, no. 4, pp. 813–821, 1998.
A. W. Aaditya, D. C. Happyanto, and B. Sumantri, “Application of Sliding Mode Control in Indirect Field Oriented Control (IFOC) for Model Based Controller,” Emit. Int. J. Eng. Technol., vol. 5, no. 2, pp. 255–269, 2018.
R. H. Subrata et al., “Perancangan Pengendali Pid,” vol. 14, pp. 1–16, 2017.
R. Saidur, S. Mekhilef, M. B. Ali, A. Safari, and H. A. Mohammed, “Applications of variable speed drive (VSD) in electrical motors energy savings,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 543–550, 2012.
C. M. F. S. Reza, M. D. Islam, and S. Mekhilef, “A review of reliable and energy efficient direct torque controlled induction motor drives,” Renew. Sustain. Energy Rev., vol. 37, pp. 919–932, 2014.
M. Suetake, I. N. Da Silva, and A. Goedtel, “Embedded DSP-based compact fuzzy system and its application for induction-motor V/f speed control,” IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 750–760, 2011.
P. Era et al., “Pengembangan Metoda Self Tuning Parameter PID Controller Dengan Menggunakan Genetic Algorithm Pada Pengaturan Motor Induksi Sebagai Penggerak Mobil Listrik,” Emitter, vol. 1, no. 1, 2009.
J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” J. Dyn. Syst. Meas. Control. Trans. ASME, vol. 115, no. 2B, pp. 220–222, 1993.
. A., S. Mu, S. Nakashima, and K. Tanaka, “PID Controller Design of Nonlinear System using a New Modified Particle Swarm Optimization with Time-Varying Constriction Coefficient,” Emit. Int. J. Eng. Technol., vol. 2, no. 2, pp. 80–90, 2014.
L. Ramli, Y. M. Sam, Z. Mohamed, M. Khairi Aripin, M. Fahezal Ismail, and L. Ramli, “Composite nonlinear feedback control with multi-objective particle swarm optimization for active front steering system,” J. Teknol., vol. 72, no. 2, pp. 13–20, 2015.
F. Salem, M. A. Awadallah, and E. H. E. Bayoumi, “Model Predictive Control for Deadbeat Performance of Induction Motor Drives,” vol. 14, no. October, pp. 303–311, 2015.
DOI: https://doi.org/10.32487/jst.v6i1.814
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 JST (Jurnal Sains Terapan)
View My Stats