Comparative Analysis of Gradient Operators in Canny Edge Detection for Bacillus sp. Microscopic Imaging

Himawan Wicaksono

Abstract


This research aims to assess the application of microscopic imaging technology in analyzing Bacillus sp. bacteria, focusing particularly on the effectiveness of gradient operators in the Canny Edge Detection Algorithm. The study encompasses an in-depth evaluation of four principal gradient operators: Sobel, Prewitt, Roberts, and Scharr, to enhance edge detection accuracy in microscopic images. Analysis revealed that Sobel and Scharr excel in precision, with Sobel standing out in creating texture homogeneity and Scharr demonstrating superior inter-pixel correlation, both vital for ensuring visual accuracy of the images. Additionally, these operators show remarkable performance in Precision and Recall, effectively identifying relevant edges with minimal errors. Conversely, the Roberts operator, with its higher F-measure, offers an ideal equilibrium between precision and recall, making it a suitable choice for broader applications. Edge Co-Occurrence Matrix (ECM) analysis indicated that Sobel and Scharr possess higher contrast values, thereby emphasizing the sharpness of edge delineation. Conclusively, the study identifies the Scharr operator as most fitting for the analysis of microscopic bacterial imagery, owing to its capability in maintaining inter-pixel correlation and enhanced classification performance. This positions the Scharr operator as a highly applicable tool for microscopic bacterial studies, crucial in the accurate and consistent recognition of bacterial patterns. These findings significantly advance our understanding of Bacillus sp., directly impacting disease diagnostics and biotechnology. The research underscores the critical importance of selecting appropriate gradient operators in microscopic analysis and highlights the need for ongoing innovation and exploration in microscopic imaging technology.


Keywords


Microscopic Imaging; Bacillus sp.; Canny Edge Detection; Gradient Operators; Edge Detection Accuracy

Full Text:

PDF

References


Smith, K.P., et al. (2020). “Image analysis and artificial intelligence in infectious disease diagnostics”. Clinical Microbiology and Infection, 26, 1318.

Johnson, M., & Davis, R. (2021). “Advanced microscopy in the study of bacterial cell biology”. Microbiology Spectrum, 9, 1-15.

Wang, Y., et al. (2019). “Single-cell bacterial imaging with expansion microscopy”. Nature Methods, 16, 987-990.

Lee, J., et al. (2022). “AI-enhanced microscopic analysis of bacterial cells”. Journal of Bacteriology, 204, e00392-21.

Kim, J., & Park, S. (2021). “Smartphone-based bacterial detection using fluorescent labeling”. Biosensors and Bioelectronics, 172, 112782.

Zhao, X., et al. (2023). “Fluorescent probes for bacteria detection: Advances and applications”. Chemical Society Reviews, 52, 1234-1247.

Murray, E., et al. (2021). “Advances in fluorescent probe technology for bacterial imaging”. Nature Reviews Microbiology, 19, 687-701.

Chen, X., & Wang, L. (2020). “Improved Canny Edge Detection algorithm for bacterial cell image analysis”. Computational Biology and Chemistry, 88, 107356.

Liu, H., et al. (2021). “Edge detection in bacterial imaging using fuzzy logic and Gaussian filters”. Journal of Microbiological Methods, 182, 106105.

Zhang, Y., & Zhou, X. (2022). “OSTU algorithm for edge detection in bacterial microscopy”. Microscopy Research and Technique, 85, 1562-1569.

Singh, A., et al. (2019). “Gradient operators in edge detection for bacterial cell images”. Journal of Imaging, 5, 54.

Patel, K., & Kumar, A. (2021). “Comparative analysis of edge detection techniques in bacterial imaging”. Biomedical Signal Processing and Control, 64, 102242.

Patel, V., & Patel, N. (2016). “Ant Colony Optimization for image edge detection”. Signal, Image and Video Processing, 10(4), 745-752.

Bansal, J.C., & Rawat, S. (2017). “Artificial bee colony algorithm for image processing tasks: A survey”. Artificial Intelligence Review, 48(4), 529-551.

Mousavi, S.M., et al. (2019). “An evolutionary computational approach for edge detection in gray scale images”. Pattern Recognition Letters, 128, 255-261.

Choudhry, H. (2016). “A comprehensive review of computational methods for automatic feature extraction from digital images”. IET Image Processing, 10(5), 349-369.

Maeda, Y., et al. (2017). “Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies”. PLoS ONE, 12, e0174723.

Karatepe, F., Taş, B., Coşkun, O., & Kahriman, M. (2022). “Detection of Escherichia Coli Bacteria by Using Image Processing Techniques”. International Journal of Biology and Biomedical Engineering.

Jung, J., & Lee, J. (2016). “Real-time bacterial microcolony counting using on-chip microscopy”. Scientific Reports, 6.

Bae, E., et al. (2016). “Advanced techniques for bacterial imaging”. Journal of Microbiology, 54(3), 219-228.

Jadhav, A. (2021). “FPGA-based edge detection for bacterial colony images”. Journal of Digital Imaging, 34(2), 350-358.

Hao, X., et al. (2021). “Improved Sobel edge detection for high-precision bacterial imaging”. Applied Microbiology and Biotechnology, 105(12), 4979-4990.

Li, Y., et al. (2021). “Enhanced Prewitt operator for bacterial colony edge detection”. Microscopy Research and Technique, 84(5), 983-992.

Buzalewicz, I., et al. (2016). “Image pre-processing for improving bacterial detection and analysis using digital holography”. Applied Optics, 55(27), 7663-7671.

Tao, X., Liu, Y., & Zhang, Z. (2014). “Application of Roberts Gradient Operator in Edge Detection”. Journal of Image Processing, 21(4), 559-564.

Zhang, H., Wang, S., & Liu, Q. (2019). “Enhanced Edge Detection Using Scharr Operator and Adaptive Filtering”. Pattern Recognition Letters, 40(2), 112-119.

Liu, F., Chen, X., & Zhao, L. (2020). “Improved Scharr Operator for Bacterial Colony Image Analysis”. Microscopy Research, 28(3), 487-495.

Gvozdev, M., Ivanov, V., & Petrov, A. (2016). “Gradient Magnitude and Direction in Microbiological Image Analysis”. Journal of Computational Biology, 23(9), 771-778.

Ashabrawy, G.A. (2015). “Edge Detection in Microbial Images: Techniques and Challenges”. Microbial Informatics, 12(1), 24-30.

Tian, Y., & Zhang, Y. (2021). “Non-Maximum Suppression for Improved Edge Analysis in Colony Images”. Image and Vision Computing, 39(7), 58-64.

Wei, L., Jiang, T., & Zhang, X. (2019). “Hysteresis Thresholding in Infrared Target Detection”. Infrared Physics & Technology, 97, 423-429.

Croxatto, A., Prod'hom, G., & Greub, G. (2017). “Applications of MALDI-TOF Mass Spectrometry in Clinical Microbiology”. Future Microbiology, 12(6), 781-794.

Rodrigues, P., Luís, A., & Tavaria, F. (2022). “A Study on Edge Co-Occurrence Matrix for Bacterial Colony Analysis”. Journal of Microbiological Methods, 179, 105986.

Wonohadidjojo, D. M. (2022). “Peak Signal-to-Noise Ratio in Microscopic Image Analysis”. Journal of Medical Imaging, 9(2), 254-260.

Britton, J., Thompson, M., & Smith, S. (2022). “Matthews Correlation Coefficient in Microbial Image Analysis”. Bioinformatics, 38(11), 3021-3027.

Chicco, D., & Jurman, G. (2020). “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation”. BMC Genomics, 21, 6.

Tharwat, A. (2020). “Classification assessment methods”. Applied Computing and Informatics, 17(1), 168-192.

Karatepe, A., Özgür, E., & Yılmaz, C. (2022). “Detection of Escherichia Coli Bacteria by Using Image Processing Techniques”. Journal of Bacterial Research, 34(2), 203-210.

Balmages, J., Patterson, I., & Li, S. (2021). “Laser speckle imaging for early detection of microbial colony forming units”. Journal of Microbial Imaging, 19(4), 467-474.

Minoni, U., Farina, L., & Rossi, M. (2015). “On the application of optical forward-scattering to bacterial identification”. Biotechnology Reports, 9, 95-101.

Li, H., Wang, J., & Zhang, S. (2022). “SAR target image edge detection based on CNN”. Computational Intelligence and Neuroscience, 2022, Article 5647389.

Deka, B., & Laskar, R. H. (2020). “Comparative Analysis of FOD based Prewitt, Sobel & Laplacian Operators for Edge Detection on Freshwater Fish images”. International Journal of Image Processing, 14(3), 88-97.

Chakravathi, R., Kumar, A., & Sinha, D. (2015). “FPGA based architecture for real-time edge detection”. Journal of Real-Time Image Processing, 10(3), 473-483.

Dong, Y., Li, S., & Zhou, X. (2016). “An Improved NMS-Based Adaptive Edge Detection Method and Its FPGA Implementation”. Journal of Image and Graphics, 21(2), 245-253.

Zhang, H., & Makowski, P. (2015). “Auto-thresholding Edge Detector for bio-image processing”. Bioimage Informatics, 12(1), 56-63.

Reddy, B.K., Patel, H., & Kumar, V. (2017). “Precision, Recall and F-measure in Diabetic Retinopathy Analysis”. Journal of Medical Imaging, 14(4), 412-419.

Ma, Y., Li, Z., & Jiang, W. (2014). “Fuzzy Box-counting Dimension Method for Edge Detection Enhancement”. Fuzzy Systems Journal, 22(3), 301-308.

Gautam, N., & Biswas, M. (2018). “Whale Optimization Algorithm for Edge Detection”. Signal Processing Letters, 25(7), 1024-1028.

Yu, T., Zhao, L., & Wang, X. (2022). “Robust Edge Detection Against Noise in Image Processing”. Journal of Computer Vision, 40(1), 34-45.

Ren, J., Li, H., & Zhang, Y. (2019). “Corner Detection Using Gabor Filter with Improved Accuracy”. Image Processing Theory, 18(2), 158-164.

Chen, X., Liu, H., & Zhang, Z. (2014). “Nonlocal Low-rank Matrix Completion for Edge Detection”. Journal of Computational Vision, 36(5), 410-421.

Zhang, Y., Liu, P., & Tan, J. (2021). “Infrared Target Enhancement Using Edge Co-Occurrence Matrix”. Infrared Imaging, 29(3), 207-215.

Süzme, R., & Guraksin, G. (2019). “Particle Swarm Optimization in Gradient-based Edge Detection Algorithms”. Journal of Image Processing, 23(1), 47-55.

Singh, A., Sharma, S., & Jain, R. (2018). “Hybrid Techniques for Noise Reduction and Edge Detection in Microscopic Bacterial Pattern Images”. Journal of Microscopy, 261(2), 213-221.

Sankararao, M., Reddy, K. R., & Srinivas, G. (2014). “PSS Filter for Enhanced Edge Detection and Noise Resistance in Image Processing”. Journal of Digital Imaging, 27(3), 344-351.




DOI: https://doi.org/10.32487/jtt.v13i1.2397

Refbacks

  • There are currently no refbacks.


JTT (Jurnal Teknologi Terpadu) has been indexed by:

 

 

 

 

 

 

 

 

 

Web
Analytics

JTT Visitor Stats